These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29619299)

  • 1. Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers.
    Khalil ISM; Tabak AF; Hamed Y; Mitwally ME; Tawakol M; Klingner A; Sitti M
    Adv Sci (Weinh); 2018 Feb; 5(2):1700461. PubMed ID: 29619299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cinemicrographic analysis of the movement of flagellated bacteria. II. The ratio of the propulsive velocity to the frequency of the wave propagation along flagellar tail.
    Shimada K; Ikkai T; Yoshida T; Asakura S
    J Mechanochem Cell Motil; 1976 Mar; 3(3):185-93. PubMed ID: 932565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical exploration on buckling instability for directional control in flagellar propulsion.
    Huang W; Jawed MK
    Soft Matter; 2020 Jan; 16(3):604-613. PubMed ID: 31872849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable switching between planar and helical flagellar swimming of a soft robotic sperm.
    Khalil ISM; Tabak AF; Abou Seif M; Klingner A; Sitti M
    PLoS One; 2018; 13(11):e0206456. PubMed ID: 30388132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stokesian dynamics simulations of a magnetotactic bacterium.
    Mohammadinejad S; Faivre D; Klumpp S
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):40. PubMed ID: 33759003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic polymer composite artificial bacterial flagella.
    Peyer KE; Siringil E; Zhang L; Nelson BJ
    Bioinspir Biomim; 2014 Nov; 9(4):046014. PubMed ID: 25405833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on Structural Design and Motion Characteristics of Magnetic Helical Soft Microrobots with Drug-Carrying Function.
    Gao Q; Lin T; Liu Z; Chen Z; Chen Z; Hu C; Shen T
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Flagellar Propulsion of Soft Microrobotic Sperm in a Viscous Heterogeneous Medium.
    Khalil ISM; Klingner A; Hamed Y; Magdanz V; Toubar M; Misra S
    Front Robot AI; 2019; 6():65. PubMed ID: 33501080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Segmented Magnetization on the Flagellar Propulsion of Sperm-Templated Microrobots.
    Magdanz V; Vivaldi J; Mohanty S; Klingner A; Vendittelli M; Simmchen J; Misra S; Khalil ISM
    Adv Sci (Weinh); 2021 Apr; 8(8):2004037. PubMed ID: 33898186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sperm Cell Driven Microrobots-Emerging Opportunities and Challenges for Biologically Inspired Robotic Design.
    Singh AV; Ansari MHD; Mahajan M; Srivastava S; Kashyap S; Dwivedi P; Pandit V; Katha U
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32340402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial flexible sperm-like nanorobot based on self-assembly and its bidirectional propulsion in precessing magnetic fields.
    Celi N; Gong D; Cai J
    Sci Rep; 2021 Nov; 11(1):21728. PubMed ID: 34741063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swimming of flagellated microorganisms.
    Keller JB; Rubinow SI
    Biophys J; 1976 Feb; 16(2 Pt 1):151-70. PubMed ID: 1247645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unlocking the secrets of multi-flagellated propulsion: drawing insights from Tritrichomonas foetus.
    Lenaghan SC; Nwandu-Vincent S; Reese BE; Zhang M
    J R Soc Interface; 2014 Apr; 11(93):20131149. PubMed ID: 24478286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex flagellar motions and swimming patterns of the flagellates Paraphysomonas vestita and Pteridomonas danica.
    Christensen-Dalsgaard KK; Fenchel T
    Protist; 2004 Mar; 155(1):79-87. PubMed ID: 15144060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fish-like magnetic microrobots for microparts transporting at liquid surfaces.
    Wang L; Zhao M; He Y; Ding S; Sun L
    Soft Matter; 2023 Apr; 19(16):2883-2890. PubMed ID: 36876990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cinemicrographic analysis of the movement of flagellated bacteria. I. The ratio of the propulsive velocity to the frequency of bodily rotation.
    Yoshida T; Shimada K; Asakura S
    J Mechanochem Cell Motil; 1975; 3(2):87-98. PubMed ID: 1214109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The physics of flagellar motion of E. coli during chemotaxis.
    Kumar MS; Philominathan P
    Biophys Rev; 2010 Feb; 2(1):13-20. PubMed ID: 28509944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-inspired magnetic swimming microrobots for biomedical applications.
    Peyer KE; Zhang L; Nelson BJ
    Nanoscale; 2013 Feb; 5(4):1259-72. PubMed ID: 23165991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polar features in the flagellar propulsion of E. coli bacteria.
    Bianchi S; Saglimbeni F; Lepore A; Di Leonardo R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062705. PubMed ID: 26172734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps.
    Kühn MJ; Schmidt FK; Eckhardt B; Thormann KM
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6340-6345. PubMed ID: 28559324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.