These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2961933)

  • 21. The use of an autochromatic tuner for the measurement of vocal fundamental frequency.
    Solberg LC; Fowler LP; Walker VG
    J Commun Disord; 1991 Feb; 24(1):51-8. PubMed ID: 2050841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Comparison of Cepstral Peak Prominence Measures From Two Acoustic Analysis Programs.
    Watts CR; Awan SN; Maryn Y
    J Voice; 2017 May; 31(3):387.e1-387.e10. PubMed ID: 27751661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative spectral evaluation of shimmer and jitter.
    Klingholz F; Martin F
    J Speech Hear Res; 1985 Jun; 28(2):169-74. PubMed ID: 4010246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Smartphones Offer New Opportunities in Clinical Voice Research.
    Manfredi C; Lebacq J; Cantarella G; Schoentgen J; Orlandi S; Bandini A; DeJonckere PH
    J Voice; 2017 Jan; 31(1):111.e1-111.e7. PubMed ID: 27068549
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microprocessor-based speech processing system.
    Guillemin BJ; Nguyen DT
    J Speech Hear Res; 1984 Jun; 27(2):311-7. PubMed ID: 6738043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ceptral voice analysis: link with perception and stroboscopy.
    Dejonckere PH
    Rev Laryngol Otol Rhinol (Bord); 1998; 119(4):245-6. PubMed ID: 9865099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A system for signal processing and data extraction from aerodynamic, acoustic, and electroglottographic signals in the study of voice production.
    Perkell JS; Holmberg EB; Hillman RE
    J Acoust Soc Am; 1991 Apr; 89(4 Pt 1):1777-81. PubMed ID: 2045586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Should jitter be measured by peak picking or by waveform matching?
    Boersma P
    Folia Phoniatr Logop; 2009; 61(5):305-8. PubMed ID: 19828997
    [No Abstract]   [Full Text] [Related]  

  • 29. Analysis of voice source characteristics using a constrained polynomial representation of voice source signals.
    Kaburagi T; Kawai K; Abe S
    J Acoust Soc Am; 2007 Feb; 121(2):745-8. PubMed ID: 17348497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic discrimination of pathological voice: sustained vowels versus continuous speech.
    Parsa V; Jamieson DG
    J Speech Lang Hear Res; 2001 Apr; 44(2):327-39. PubMed ID: 11324655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cepstral peak prominence: a more reliable measure of dysphonia.
    Heman-Ackah YD; Heuer RJ; Michael DD; Ostrowski R; Horman M; Baroody MM; Hillenbrand J; Sataloff RT
    Ann Otol Rhinol Laryngol; 2003 Apr; 112(4):324-33. PubMed ID: 12731627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of voice analysis systems for perturbation measurement.
    Bielamowicz S; Kreiman J; Gerratt BR; Dauer MS; Berke GS
    J Speech Hear Res; 1996 Feb; 39(1):126-34. PubMed ID: 8820704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic pattern recognition of fricative-vowel coarticulation by the self-organizing map.
    Leinonen L; Mujunen R; Kangas J; Torkkola K
    Folia Phoniatr (Basel); 1993; 45(4):173-81. PubMed ID: 8406267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validity of jitter measures in non-quasi-periodic voices. Part I: perceptual and computer performances in cycle pattern recognition.
    Dejonckere P; Schoentgen J; Giordano A; Fraj S; Bocchi L; Manfredi C
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):70-7. PubMed ID: 21689056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multidimensional Voice Program (MDVP) and amplitude variation parameters in euphonic adult subjects. Normative study.
    Nicastri M; Chiarella G; Gallo LV; Catalano M; Cassandro E
    Acta Otorhinolaryngol Ital; 2004 Dec; 24(6):337-41. PubMed ID: 15952683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of soft palate implants on acoustic characteristics of voice and articulation.
    Akpinar ME; Kocak I; Gurpinar B; Esen HE
    J Voice; 2011 May; 25(3):381-6. PubMed ID: 20434875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Effect of Moving Window on Acoustic Analysis.
    Shu M; Jiang JJ; Willey M
    J Voice; 2016 Jan; 30(1):5-10. PubMed ID: 25998407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Consistency of voice frequency and perturbation measures in children using cepstral analyses: a movement toward increased recording stability.
    Diercks GR; Ojha S; Infusino S; Maurer R; Hartnick CJ
    JAMA Otolaryngol Head Neck Surg; 2013 Aug; 139(8):811-6. PubMed ID: 23949356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analyses of Sustained Vowels in Down Syndrome (DS): A Case Study Using Spectrograms and Perturbation Data to Investigate Voice Quality in Four Adults With DS.
    Jeffery T; Cunningham S; Whiteside SP
    J Voice; 2018 Sep; 32(5):644.e11-644.e24. PubMed ID: 28943107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustic analyses of sustained and running voices from patients with laryngeal pathologies.
    Zhang Y; Jiang JJ
    J Voice; 2008 Jan; 22(1):1-9. PubMed ID: 16978835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.