BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29619452)

  • 1. Microsensor systems for cell metabolism - from 2D culture to organ-on-chip.
    Kieninger J; Weltin A; Flamm H; Urban GA
    Lab Chip; 2018 May; 18(9):1274-1291. PubMed ID: 29619452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential.
    Fuchs S; Johansson S; Tjell AØ; Werr G; Mayr T; Tenje M
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2926-2948. PubMed ID: 34133114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro.
    Moses SR; Adorno JJ; Palmer AF; Song JW
    Am J Physiol Cell Physiol; 2021 Jan; 320(1):C92-C105. PubMed ID: 33176110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Sensing in 3D Cell Culture Models: New Tools for Developing Better Cancer Diagnostics and Treatments.
    Oliveira M; Conceição P; Kant K; Ainla A; Diéguez L
    Cancers (Basel); 2021 Mar; 13(6):. PubMed ID: 33803738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal dissection of tumor microenvironment via in situ sensing and monitoring in tumor-on-a-chip.
    Zhou L; Liu L; Chang MA; Ma C; Chen W; Chen P
    Biosens Bioelectron; 2023 Apr; 225():115064. PubMed ID: 36680970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic and Organ-on-a-Chip Approaches to Investigate Cellular and Microenvironmental Contributions to Cardiovascular Function and Pathology.
    Doherty EL; Aw WY; Hickey AJ; Polacheck WJ
    Front Bioeng Biotechnol; 2021; 9():624435. PubMed ID: 33614613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor-integrated brain-on-a-chip platforms: Improving the predictive validity in neurodegenerative research.
    Spitz S; Schobesberger S; Brandauer K; Ertl P
    Bioeng Transl Med; 2024 May; 9(3):e10604. PubMed ID: 38818126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint.
    Liu Y; Gill E; Shery Huang YY
    Future Sci OA; 2017 Jun; 3(2):FSO173. PubMed ID: 28670465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical imaging of cells and tissues.
    Lin TE; Rapino S; Girault HH; Lesch A
    Chem Sci; 2018 May; 9(20):4546-4554. PubMed ID: 29899947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.
    Humayun M; Chow CW; Young EWK
    Lab Chip; 2018 May; 18(9):1298-1309. PubMed ID: 29651473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desktop-Stereolithography 3D-Printing of a Poly(dimethylsiloxane)-Based Material with Sylgard-184 Properties.
    Bhattacharjee N; Parra-Cabrera C; Kim YT; Kuo AP; Folch A
    Adv Mater; 2018 May; 30(22):e1800001. PubMed ID: 29656459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering small tubes with changes in diameter for the study of kidney cell organization.
    Venzac B; Madoun R; Benarab T; Monnier S; Cayrac F; Myram S; Leconte L; Amblard F; Viovy JL; Descroix S; Coscoy S
    Biomicrofluidics; 2018 Mar; 12(2):024114. PubMed ID: 29657657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An engineered in vitro model of the human myotendinous junction.
    Josvai M; Polyak E; Kalluri M; Robertson S; Crone WC; Suzuki M
    Acta Biomater; 2024 May; 180():279-294. PubMed ID: 38604466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A miniaturized culture platform for control of the metabolic environment.
    Orlowska MK; Krycer JR; Reid JD; Mills RJ; Doran MR; Hudson JE
    Biomicrofluidics; 2024 Mar; 18(2):024101. PubMed ID: 38434908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cell State Monitoring System with Integrated In Situ Imaging and pH Detection.
    Li Z; Zhang R; Xu F; Yang J; Zhou L; Mao H
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Organs-on-Chips and Their Impact on Precision Medicine and Advanced System Simulation.
    Luo Y; Li X; Zhao Y; Zhong W; Xing M; Lyu G
    Pharmaceutics; 2023 Aug; 15(8):. PubMed ID: 37631308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollution-Free and Highly Sensitive Lactate Detection in Cell Culture Based on a Microfluidic Chip.
    Shi J; Tong W; Yu Z; Tong L; Chen H; Jin J; Zhu Y
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Redox-Polymer-Based Electrochemical Glucose Biosensor Suitable for Integration in Microfluidic 3D Cell Culture Systems.
    Navarro-Nateras L; Diaz-Gonzalez J; Aguas-Chantes D; Coria-Oriundo LL; Battaglini F; Ventura-Gallegos JL; Zentella-Dehesa A; Oza G; Arriaga LG; Casanova-Moreno JR
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review.
    Dai M; Xiao G; Shao M; Zhang YS
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.