These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29619468)

  • 1. Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels.
    Song C; Jin T; Yan R; Qi W; Huang T; Ding H; Tan SH; Nguyen NT; Xi L
    Lab Chip; 2018 May; 18(9):1292-1297. PubMed ID: 29619468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy.
    Shelton RL; Mattison SP; Applegate BE
    J Biophotonics; 2014 Oct; 7(10):834-40. PubMed ID: 23963621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-regulated, droplet-based sample chopper for microfluidic absorbance detection.
    Deal KS; Easley CJ
    Anal Chem; 2012 Feb; 84(3):1510-6. PubMed ID: 22191400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis.
    Fornell A; Nilsson J; Jonsson L; Periyannan Rajeswari PK; Joensson HN; Tenje M
    Anal Chem; 2015 Oct; 87(20):10521-6. PubMed ID: 26422760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards acousto-optic tissue imaging with nanosecond laser pulses.
    Resink SG; Hondebrink E; Steenbergen W
    Opt Express; 2014 Feb; 22(3):3564-71. PubMed ID: 24663646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy.
    Wong TTW; Zhang R; Zhang C; Hsu HC; Maslov KI; Wang L; Shi J; Chen R; Shung KK; Zhou Q; Wang LV
    Nat Commun; 2017 Nov; 8(1):1386. PubMed ID: 29123109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric tracking of migratory melanophores during zebrafish development by optoacoustic microscopy.
    Kneipp M; Estrada H; Lauri A; Turner J; Ntziachristos V; Westmeyer GG; Razansky D
    Mech Dev; 2015 Nov; 138 Pt 3():300-4. PubMed ID: 26376465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-optical scanhead for ultrasound and photoacoustic dual-modality imaging.
    Hsieh BY; Chen SL; Ling T; Guo LJ; Li PC
    Opt Express; 2012 Jan; 20(2):1588-96. PubMed ID: 22274501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging liquid dielectrophoresis for microfluidic applications.
    Chugh D; Kaler KV
    Biomed Mater; 2008 Sep; 3(3):034009. PubMed ID: 18708707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Noncontact Picolitor Droplet Handling by Photothermal Control of Interfacial Flow.
    Muto M; Yamamoto M; Motosuke M
    Anal Sci; 2016; 32(1):49-55. PubMed ID: 26753705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon photonic sensors incorporated in a digital microfluidic system.
    Lerma Arce C; Witters D; Puers R; Lammertyn J; Bienstman P
    Anal Bioanal Chem; 2012 Dec; 404(10):2887-94. PubMed ID: 22926129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy.
    Chen Z; Yang S; Xing D
    Opt Lett; 2012 Aug; 37(16):3414-6. PubMed ID: 23381275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets.
    Piao Y; Han DJ; Azad MR; Park M; Seo TS
    Biosens Bioelectron; 2015 Mar; 65():220-5. PubMed ID: 25461161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoacoustic guided ultrasound wavefront shaping for targeted acousto-optic imaging.
    Staley J; Hondebrink E; Peterson W; Steenbergen W
    Opt Express; 2013 Dec; 21(25):30553-62. PubMed ID: 24514632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential detection photothermal spectroscopy: towards ultra-fast and sensitive label-free detection in picoliter & femtoliter droplets.
    Maceiczyk RM; Hess D; Chiu FWY; Stavrakis S; deMello AJ
    Lab Chip; 2017 Oct; 17(21):3654-3663. PubMed ID: 28967022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal lens microscopy as a detector in microdevices.
    Cassano CL; Mawatari K; Kitamori T; Fan ZH
    Electrophoresis; 2014 Aug; 35(16):2279-91. PubMed ID: 24435958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.