These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Effect of Co-overexpression of Nisin Key Genes on Nisin Production Improvement in Lactococcus lactis LS01. Ni ZJ; Zhang XY; Liu F; Wang M; Hao RH; Ling PX; Zhu XQ Probiotics Antimicrob Proteins; 2017 Jun; 9(2):204-212. PubMed ID: 28303477 [TBL] [Abstract][Full Text] [Related]
10. GlnR-mediated regulation of nitrogen metabolism in Lactococcus lactis. Larsen R; Kloosterman TG; Kok J; Kuipers OP J Bacteriol; 2006 Jul; 188(13):4978-82. PubMed ID: 16788206 [TBL] [Abstract][Full Text] [Related]
11. d-Methionine and d-Phenylalanine Improve Lactococcus lactis F44 Acid Resistance and Nisin Yield by Governing Cell Wall Remodeling. Wu H; Xue E; Zhi N; Song Q; Tian K; Caiyin Q; Yuan L; Qiao J Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32111594 [No Abstract] [Full Text] [Related]
12. AcrR1, a novel TetR/AcrR family repressor, mediates acid and antibiotic resistance and nisin biosynthesis in Lactococcus lactis F44. Jian P; Liu J; Li L; Song Q; Zhang D; Zhang S; Chai C; Zhao H; Zhao G; Zhu H; Qiao J J Dairy Sci; 2024 Sep; 107(9):6576-6591. PubMed ID: 38762103 [TBL] [Abstract][Full Text] [Related]
13. Engineering Lactococcus lactis as a multi-stress tolerant biosynthetic chassis by deleting the prophage-related fragment. Qiao W; Qiao Y; Liu F; Zhang Y; Li R; Wu Z; Xu H; Saris PEJ; Qiao M Microb Cell Fact; 2020 Dec; 19(1):225. PubMed ID: 33298073 [TBL] [Abstract][Full Text] [Related]
14. ComX improves acid tolerance by regulating the expression of late competence proteins in Lactococcus lactis F44. Yuan L; Wu H; Wang B; Jia C; Liang D; Caiyin QG; Qiao J J Dairy Sci; 2021 Sep; 104(9):9556-9569. PubMed ID: 34147226 [TBL] [Abstract][Full Text] [Related]
15. Systems-Level Analysis of the Global Regulatory Mechanism of CodY in Lactococcus lactis Metabolism and Nisin Immunity Modulation. Wu H; Tian K; Feng J; Qi H; Qiao J Appl Environ Microbiol; 2022 Mar; 88(5):e0184721. PubMed ID: 35044848 [TBL] [Abstract][Full Text] [Related]
16. Loss of IrpT function in Lactococcus lactis subsp. lactis N8 results in increased nisin resistance. Xuanyuan Z; Wu Z; Li R; Jiang D; Su J; Xu H; Bai Y; Zhang X; Saris PE; Qiao M Curr Microbiol; 2010 Oct; 61(4):329-34. PubMed ID: 20213102 [TBL] [Abstract][Full Text] [Related]
17. [Effect of overexpressing Nisin A structural gene nisA on Nisin A production]. Fan M; Qiu Y; Liu C; Ji Z; Ma X; Yu Y; Chen S Sheng Wu Gong Cheng Xue Bao; 2012 Oct; 28(10):1175-83. PubMed ID: 23311132 [TBL] [Abstract][Full Text] [Related]
18. Improving nitrogen source utilization from defatted soybean meal for nisin production by enhancing proteolytic function of Lactococcus lactis F44. Liu J; Zhou J; Wang L; Ma Z; Zhao G; Ge Z; Zhu H; Qiao J Sci Rep; 2017 Jul; 7(1):6189. PubMed ID: 28733629 [TBL] [Abstract][Full Text] [Related]
19. Large increase in brazzein expression achieved by changing the plasmid /strain combination of the NICE system in Lactococcus lactis. Berlec A; Strukelj B Lett Appl Microbiol; 2009 Jun; 48(6):750-5. PubMed ID: 19413801 [TBL] [Abstract][Full Text] [Related]
20. The increase of O-acetylation and N-deacetylation in cell wall promotes acid resistance and nisin production through improving cell wall integrity in Lactococcus lactis. Cao L; Liang D; Hao P; Song Q; Xue E; Caiyin Q; Cheng Z; Qiao J J Ind Microbiol Biotechnol; 2018 Sep; 45(9):813-825. PubMed ID: 29876686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]