BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29620098)

  • 41. Functional Differences in the Role of Ductal Stem Cells in Mouse Major Salivary Glands.
    Narendra R; Ninche N; Ghazizadeh S
    Stem Cells Dev; 2023 Mar; 32(5-6):152-161. PubMed ID: 36541354
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acquisition of epithelial-mesenchymal transition and cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived 3D tumor spheroids.
    Huang YJ; Hsu SH
    Biomaterials; 2014 Dec; 35(38):10070-9. PubMed ID: 25282622
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Around 90° Contact Angle of Dish Surface Is a Key Factor in Achieving Spontaneous Spheroid Formation.
    Li X; Li N; Chen K; Nagasawa S; Yoshizawa M; Kagami H
    Tissue Eng Part C Methods; 2018 Oct; 24(10):578-584. PubMed ID: 30234440
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation, tissue localization, and cellular characterization of progenitors derived from adult human salivary glands.
    Sato A; Okumura K; Matsumoto S; Hattori K; Hattori S; Shinohara M; Endo F
    Cloning Stem Cells; 2007; 9(2):191-205. PubMed ID: 17579552
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Role of mTOR and Injury in Developing Salispheres.
    Saleem R; Carpenter G
    Biomedicines; 2023 Feb; 11(2):. PubMed ID: 36831139
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased Survival and Function of Mesenchymal Stem Cell Spheroids Entrapped in Instructive Alginate Hydrogels.
    Ho SS; Murphy KC; Binder BY; Vissers CB; Leach JK
    Stem Cells Transl Med; 2016 Jun; 5(6):773-81. PubMed ID: 27057004
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fibronectin-induced ductal formation in salivary gland self-organization model.
    Farahat M; Kazi GAS; Taketa H; Hara ES; Oshima M; Kuboki T; Matsumoto T
    Dev Dyn; 2019 Sep; 248(9):813-825. PubMed ID: 31237723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of dimensionality on growth and differentiation of neural progenitors from different regions of fetal rat brain in vitro: 3-dimensional spheroid versus 2-dimensional monolayer culture.
    Lu H; Searle K; Liu Y; Parker T
    Cells Tissues Organs; 2012; 196(1):48-55. PubMed ID: 22301365
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cell death, cavitation and spontaneous multi-differentiation of dental pulp stem cells-derived spheroids in vitro: a journey to survival and organogenesis.
    Xiao L; Kumazawa Y; Okamura H
    Biol Cell; 2014 Dec; 106(12):405-19. PubMed ID: 25175801
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Incorporation of gelatin microparticles on the formation of adipose-derived stem cell spheroids.
    Kim Y; Baipaywad P; Jeong Y; Park H
    Int J Biol Macromol; 2018 Apr; 110():472-478. PubMed ID: 29369781
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds.
    Gupta V; Davis G; Gordon A; Altman AM; Reece GP; Gascoyne PR; Mathur AB
    J Biomed Mater Res A; 2010 Aug; 94(2):515-23. PubMed ID: 20186770
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Correction: Maintenance of the spheroid organization and properties of glandular progenitor cells by fabricated chitosan based biomaterials.
    Lee HW; Hsiao YC; Young TH; Yang TL
    Biomater Sci; 2018 Jun; 6(7):1994-1995. PubMed ID: 29856454
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening.
    Wang JZ; Zhu YX; Ma HC; Chen SN; Chao JY; Ruan WD; Wang D; Du FG; Meng YZ
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():215-25. PubMed ID: 26952417
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell Mimicking Microparticles Influence the Organization, Growth, and Mechanophenotype of Stem Cell Spheroids.
    Labriola NR; Sadick JS; Morgan JR; Mathiowitz E; Darling EM
    Ann Biomed Eng; 2018 Aug; 46(8):1146-1159. PubMed ID: 29671154
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlling branching structure formation of the salivary gland by the degree of chitosan deacetylation.
    Hsiao YC; Chen CN; Chen YT; Yang TL
    Acta Biomater; 2013 Sep; 9(9):8214-23. PubMed ID: 23770221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formation of melanocyte spheroids on the chitosan-coated surface.
    Lin SJ; Jee SH; Hsaio WC; Lee SJ; Young TH
    Biomaterials; 2005 Apr; 26(12):1413-22. PubMed ID: 15482829
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Human salivary gland acinar cells spontaneously form three-dimensional structures and change the protein expression patterns.
    Chan YH; Huang TW; Young TH; Lou PJ
    J Cell Physiol; 2011 Nov; 226(11):3076-85. PubMed ID: 21302307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring the Cocktail Factor Approach to Generate Salivary Gland Progenitors through Co-Culture Techniques.
    Zhang Y; Yan S; Mei Z; Zhang H; Ding C; Zhang S; Wei S
    Tissue Eng Regen Med; 2024 Jul; 21(5):749-759. PubMed ID: 38466363
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of amine content and chemistry on long-term, three-dimensional hepatocyte spheroid culture atop aminated elastin-like polypeptide coatings.
    Weeks CA; Aden B; Zhang J; Singh A; Hickey RD; Kilbey SM; Nyberg SL; Janorkar AV
    J Biomed Mater Res A; 2017 Feb; 105(2):377-388. PubMed ID: 27648820
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The mechanism of a chitosan-collagen composite film used as biomaterial support for MC3T3-E1 cell differentiation.
    Wang X; Wang G; Liu L; Zhang D
    Sci Rep; 2016 Dec; 6():39322. PubMed ID: 28000715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.