These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2962016)

  • 1. The levator auris longus muscle of the mouse: a convenient preparation for studies of short- and long-term presynaptic effects of drugs or toxins.
    Angaut-Petit D; Molgo J; Connold AL; Faille L
    Neurosci Lett; 1987 Nov; 82(1):83-8. PubMed ID: 2962016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal sprouting in mouse neuromuscular junctions poisoned with botulinum type A toxin: morphological and electrophysiological features.
    Angaut-Petit D; Molgó J; Comella JX; Faille L; Tabti N
    Neuroscience; 1990; 37(3):799-808. PubMed ID: 1701041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of synchronization of quantal transmitter release from mammalian motor endings by the use of botulinal toxins type A and D.
    Molgó J; Siegel LS; Tabti N; Thesleff S
    J Physiol; 1989 Apr; 411():195-205. PubMed ID: 2575665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sprouting of mammalian motor nerve terminals induced by in vivo injection of botulinum type-D toxin and the functional recovery of paralysed neuromuscular junctions.
    Comella JX; Molgo J; Faille L
    Neurosci Lett; 1993 Apr; 153(1):61-4. PubMed ID: 8390032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Ultrastructural analysis of mouse levator auris longus muscle intoxicated in vivo by botulinum neurotoxin type A].
    Velasco E; Gledhill T; Linares C; Roschman-González A
    Invest Clin; 2008 Dec; 49(4):469-86. PubMed ID: 19245166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upregulation of calcitonin gene-related peptide at mouse motor nerve terminals poisoned with botulinum type-A toxin.
    Meunier FA; Colasante C; Faille L; Gastard M; Molgó J
    Pflugers Arch; 1996; 431(6 Suppl 2):R297-8. PubMed ID: 8739382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nerve terminal sprouting in botulinum type-A treated mouse levator auris longus muscle.
    Juzans P; Comella JX; Molgo J; Faille L; Angaut-Petit D
    Neuromuscul Disord; 1996 May; 6(3):177-85. PubMed ID: 8784806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The plantar nerves-lumbrical muscles: a useful nerve-muscle preparation for assaying the effects of botulinum neurotoxin.
    Clark AW; Bandyopadhyay S; DasGupta BR
    J Neurosci Methods; 1987 Apr; 19(4):285-95. PubMed ID: 3586701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature end-plate potentials in rat skeletal muscle poisoned with botulinum toxin.
    Kim YI; Lømo T; Lupa MT; Thesleff S
    J Physiol; 1984 Nov; 356():587-99. PubMed ID: 6520797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic effects of botulinum toxin on neuromuscular transmission and sensitivity to acetylcholine in slow and fast skeletal muscle of the mouse.
    Tonge DA
    J Physiol; 1974 Aug; 241(1):127-39. PubMed ID: 4371301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plates in slow and fast skeletal muscle of the mouse.
    Duchen LW; Tonge DA
    J Physiol; 1973 Jan; 228(1):157-72. PubMed ID: 4346702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nerve growth in botulinum toxin poisoned muscles.
    Holland RL; Brown MC
    Neuroscience; 1981; 6(6):1167-79. PubMed ID: 7279219
    [No Abstract]   [Full Text] [Related]  

  • 13. Dissociation between nerve-muscle transmission and nerve trophic effects on rat diaphragm using type D botulinum toxin.
    Bray JJ; Harris AJ
    J Physiol; 1975 Dec; 253(1):53-77. PubMed ID: 54420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electron microscopic study of the changes induced by botulinum toxin in the motor end-plates of slow and fast skeletal muscle fibres of the mouse.
    Duchen LW
    J Neurol Sci; 1971 Sep; 14(1):47-60. PubMed ID: 5119451
    [No Abstract]   [Full Text] [Related]  

  • 15. Absence of action potentials in frog slow muscle fibres paralysed by botulinum toxin.
    Miledi R; Spitzer NC
    J Physiol; 1974 Aug; 241(1):183-99. PubMed ID: 4371279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in motor innervation and cholinesterase localization induced by botulinum toxin in skeletal muscle of the mouse: differences between fast and slow muscles.
    Duchen LW
    J Neurol Neurosurg Psychiatry; 1970 Feb; 33(1):40-54. PubMed ID: 4907278
    [No Abstract]   [Full Text] [Related]  

  • 17. Incorporation of synaptotagmin II to the axolemma of botulinum type-A poisoned mouse motor endings during enhanced quantal acetylcholine release.
    Angaut-Petit D; Molgó J; Faille L; Juzans P; Takahashi M
    Brain Res; 1998 Jun; 797(2):357-60. PubMed ID: 9666170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using mouse cranial muscles to investigate neuromuscular pathology in vivo.
    Murray LM; Gillingwater TH; Parson SH
    Neuromuscul Disord; 2010 Nov; 20(11):740-3. PubMed ID: 20637618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction.
    Nadal L; Garcia N; Hurtado E; Simó A; Tomàs M; Lanuza MA; Santafé M; Tomàs J
    Mol Brain; 2016 Jun; 9(1):67. PubMed ID: 27339059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The antagonism between botulinum toxin and calcium in motor nerve terminals.
    Gundersen CB; Katz B; Miledi R
    Proc R Soc Lond B Biol Sci; 1982 Oct; 216(1204):369-76. PubMed ID: 6129634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.