These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29620871)

  • 1. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors.
    Ha M; Lim S; Cho S; Lee Y; Na S; Baig C; Ko H
    ACS Nano; 2018 Apr; 12(4):3964-3974. PubMed ID: 29620871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors.
    Wang K; Lou Z; Wang L; Zhao L; Zhao S; Wang D; Han W; Jiang K; Shen G
    ACS Nano; 2019 Aug; 13(8):9139-9147. PubMed ID: 31330103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Morphology-Controllable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermis-Dermis-Inspired Interlocked Asymmetric-Nanocone Arrays for Detection of Tiny Pressure.
    Niu H; Gao S; Yue W; Li Y; Zhou W; Liu H
    Small; 2020 Jan; 16(4):e1904774. PubMed ID: 31885133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive Multimodal Tactile Sensors with Skin-Inspired Microstructures through Localized Ferroelectric Polarization.
    Shin YE; Park YJ; Ghosh SK; Lee Y; Park J; Ko H
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105423. PubMed ID: 35072354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Gradient Conductivity and Stiffness for Ultrasensitive Electronic Skins.
    Lee Y; Myoung J; Cho S; Park J; Kim J; Lee H; Lee Y; Lee S; Baig C; Ko H
    ACS Nano; 2021 Jan; 15(1):1795-1804. PubMed ID: 33369402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferroelectric Multilayer Nanocomposites with Polarization and Stress Concentration Structures for Enhanced Triboelectric Performances.
    Park Y; Shin YE; Park J; Lee Y; Kim MP; Kim YR; Na S; Ghosh SK; Ko H
    ACS Nano; 2020 Jun; 14(6):7101-7110. PubMed ID: 32501001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Powered Pressure- and Vibration-Sensitive Tactile Sensors for Learning Technique-Based Neural Finger Skin.
    Chun S; Son W; Kim H; Lim SK; Pang C; Choi C
    Nano Lett; 2019 May; 19(5):3305-3312. PubMed ID: 31021638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Flexible, Waterproof, Transparent, and Self-Powered Tactile Sensing Panel.
    Jiang XZ; Sun YJ; Fan Z; Zhang TY
    ACS Nano; 2016 Aug; 10(8):7696-704. PubMed ID: 27332110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skin-Inspired Hair-Epidermis-Dermis Hierarchical Structures for Electronic Skin Sensors with High Sensitivity over a Wide Linear Range.
    Kong H; Song Z; Li W; Bao Y; Qu D; Ma Y; Liu Z; Wang W; Wang Z; Han D; Niu L
    ACS Nano; 2021 Oct; 15(10):16218-16227. PubMed ID: 34605628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Sensitive Interlocked Piezoresistive Sensors Based on Ultrathin Ordered Nanocone Array Films and Their Sensitivity Simulation.
    Lu Y; He Y; Qiao J; Niu X; Li X; Liu H; Liu L
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55169-55180. PubMed ID: 33251803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Electronic Skin through Hierarchical Polymer Structural Design.
    Zhang M; Gong S; Hakobyan K; Gao Z; Shao Z; Peng S; Wu S; Hao X; Jiang Z; Wong EH; Liang K; Wang CH; Cheng W; Xu J
    Adv Sci (Weinh); 2024 Feb; 11(7):e2309006. PubMed ID: 38072658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Triboelectric Strain-Insensitive Pressure Sensors Based on Hierarchical Superposition Patterns.
    Lee HJ; Chun KY; Oh JH; Han CS
    ACS Sens; 2021 Jun; 6(6):2411-2418. PubMed ID: 34100591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-Inspired Hybrid Dielectric for Capacitive and Triboelectric Tactile Sensors with High Sensitivity and Ultrawide Linearity Range.
    Ji B; Zhou Q; Hu B; Zhong J; Zhou J; Zhou B
    Adv Mater; 2021 Jul; 33(27):e2100859. PubMed ID: 34062019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles.
    Jia J; Huang G; Deng J; Pan K
    Nanoscale; 2019 Mar; 11(10):4258-4266. PubMed ID: 30565627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidermis-Inspired Ultrathin 3D Cellular Sensor Array for Self-Powered Biomedical Monitoring.
    Yan C; Deng W; Jin L; Yang T; Wang Z; Chu X; Su H; Chen J; Yang W
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41070-41075. PubMed ID: 30398047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires.
    Gong S; Schwalb W; Wang Y; Chen Y; Tang Y; Si J; Shirinzadeh B; Cheng W
    Nat Commun; 2014; 5():3132. PubMed ID: 24495897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli.
    Park J; Kim M; Lee Y; Lee HS; Ko H
    Sci Adv; 2015 Oct; 1(9):e1500661. PubMed ID: 26601303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition.
    Lee S; Kim J; Yun I; Bae GY; Kim D; Park S; Yi IM; Moon W; Chung Y; Cho K
    Nat Commun; 2019 Jun; 10(1):2468. PubMed ID: 31213598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.