These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29620876)

  • 1. Electron-Rich, Diiron Bis(monothiolato) Carbonyls: C-S Bond Homolysis in a Mixed Valence Diiron Dithiolate.
    Li Q; Lalaoui N; Woods TJ; Rauchfuss TB; Arrigoni F; Zampella G
    Inorg Chem; 2018 Apr; 57(8):4409-4418. PubMed ID: 29620876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere.
    Rauchfuss TB
    Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational and Experimental Investigations of the Fe
    Arrigoni F; Zampella G; Zhang F; Kagalwala HN; Li QL; Woods TJ; Rauchfuss TB
    Inorg Chem; 2021 Mar; 60(6):3917-3926. PubMed ID: 33650855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Protonation of Fe2(pdt)(CNR)6, Electron-Rich Analogues of Fe2(pdt)(CO)6.
    Zhou X; Barton BE; Chambers GM; Rauchfuss TB; Arrigoni F; Zampella G
    Inorg Chem; 2016 Apr; 55(7):3401-12. PubMed ID: 26999632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chelate control of diiron(I) dithiolates relevant to the [Fe-Fe]- hydrogenase active site.
    Justice AK; Zampella G; De Gioia L; Rauchfuss TB; van der Vlugt JI; Wilson SR
    Inorg Chem; 2007 Mar; 46(5):1655-64. PubMed ID: 17279743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isomerization of the hydride complexes [HFe2(SR)2(PR3)(x)(CO)(6-x)]+ (x = 2, 3, 4) relevant to the active site models for the [FeFe]-hydrogenases.
    Barton BE; Zampella G; Justice AK; De Gioia L; Rauchfuss TB; Wilson SR
    Dalton Trans; 2010 Mar; 39(12):3011-9. PubMed ID: 20221534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New reactions of terminal hydrides on a diiron dithiolate.
    Wang W; Rauchfuss TB; Zhu L; Zampella G
    J Am Chem Soc; 2014 Apr; 136(15):5773-82. PubMed ID: 24661238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrids of [FeFe]- and [NiFe]-H
    Zhang F; Woods TJ; Rauchfuss TB
    Organometallics; 2023 Jul; 42(13):1607-1614. PubMed ID: 37928214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of a mixed valence diiron hydride: evidence for a spectator hydride in hydrogen evolution catalysis.
    Wang W; Nilges MJ; Rauchfuss TB; Stein M
    J Am Chem Soc; 2013 Mar; 135(9):3633-9. PubMed ID: 23383865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fe2(SR)2(mu-CO)(CNMe)6]2+ and analogues: a new class of diiron dithiolates as structural models for the H(ox)Air state of the fe-only hydrogenase.
    Boyke CA; Rauchfuss TB; Wilson SR; Rohmer MM; Bénard M
    J Am Chem Soc; 2004 Nov; 126(46):15151-60. PubMed ID: 15548012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited state properties of diiron dithiolate hydrides: implications in the unsensitized photocatalysis of H2 evolution.
    Bertini L; Fantucci P; De Gioia L; Zampella G
    Inorg Chem; 2013 Sep; 52(17):9826-41. PubMed ID: 23952259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial Deoxygenative CO Homocoupling by a Diiron Complex.
    Singh D; Knight BJ; Catalano VJ; García-Serres R; Maurel V; Mouesca JM; Murray LJ
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202308813. PubMed ID: 37594782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Diiron(I) Dithiolato Carbonyl Complexes.
    Li Y; Rauchfuss TB
    Chem Rev; 2016 Jun; 116(12):7043-77. PubMed ID: 27258046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    Biochemistry; 2004 Mar; 43(11):3204-13. PubMed ID: 15023070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the Dithiolate Bridge on the Oxidative Processes of Diiron Models Related to the Active Site of [FeFe] Hydrogenases.
    Arrigoni F; Mohamed Bouh S; De Gioia L; Elleouet C; Pétillon FY; Schollhammer P; Zampella G
    Chemistry; 2017 Mar; 23(18):4364-4372. PubMed ID: 28052527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts.
    Ghosh S; Hogarth G; Hollingsworth N; Holt KB; Richards I; Richmond MG; Sanchez BE; Unwin D
    Dalton Trans; 2013 May; 42(19):6775-92. PubMed ID: 23503781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the Reactivity of Bifunctional Ligands: Carboxylate-Bridged Nonheme Diiron(II) Complexes Bearing Free Thiol Groups.
    Pal N; Majumdar A
    Inorg Chem; 2016 Mar; 55(6):3181-91. PubMed ID: 26959857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of steric hindrance on the core geometry and sulfoxidation chemistry of carboxylate-rich diiron(II) complexes.
    Reisner E; Abikoff TC; Lippard SJ
    Inorg Chem; 2007 Nov; 46(24):10229-40. PubMed ID: 17973373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation, reactivity and redox properties of carbon- and sulfur-bridged diiron complexes derived from dibenzothienyl Schiff bases: effect of N,N- and N,P-chelating moieties.
    Santo K; Hirotsu M; Kinoshita I
    Dalton Trans; 2015 Mar; 44(9):4155-66. PubMed ID: 25623444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diiron Azamonothiolates via Scission of Dithiadiazacyclooctanes by Iron Carbonyls.
    Lin T; Ulloa OA; Rauchfuss TB; Gray DL
    Eur J Inorg Chem; 2014 Sep; 2015(25):4109-4114. PubMed ID: 26167130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.