These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 29620886)
1. Role of Molecular Interactions and Protein Rearrangement in the Dissociation Kinetics of p38α MAP Kinase Type-I/II/III Inhibitors. You W; Chang CA J Chem Inf Model; 2018 May; 58(5):968-981. PubMed ID: 29620886 [TBL] [Abstract][Full Text] [Related]
2. Multiscale computational study of ligand binding pathways: Case of p38 MAP kinase and its inhibitors. Huang YM Biophys J; 2021 Sep; 120(18):3881-3892. PubMed ID: 34453922 [TBL] [Abstract][Full Text] [Related]
3. Revealing the favorable dissociation pathway of type II kinase inhibitors via enhanced sampling simulations and two-end-state calculations. Sun H; Tian S; Zhou S; Li Y; Li D; Xu L; Shen M; Pan P; Hou T Sci Rep; 2015 Feb; 5():8457. PubMed ID: 25678308 [TBL] [Abstract][Full Text] [Related]
4. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations. Casasnovas R; Limongelli V; Tiwary P; Carloni P; Parrinello M J Am Chem Soc; 2017 Apr; 139(13):4780-4788. PubMed ID: 28290199 [TBL] [Abstract][Full Text] [Related]
5. Development of a fluorescent-tagged kinase assay system for the detection and characterization of allosteric kinase inhibitors. Simard JR; Getlik M; Grütter C; Pawar V; Wulfert S; Rabiller M; Rauh D J Am Chem Soc; 2009 Sep; 131(37):13286-96. PubMed ID: 19572644 [TBL] [Abstract][Full Text] [Related]
6. Exploring transition pathway and free-energy profile of large-scale protein conformational change by combining normal mode analysis and umbrella sampling molecular dynamics. Wang J; Shao Q; Xu Z; Liu Y; Yang Z; Cossins BP; Jiang H; Chen K; Shi J; Zhu W J Phys Chem B; 2014 Jan; 118(1):134-43. PubMed ID: 24350625 [TBL] [Abstract][Full Text] [Related]
7. Human p38α mitogen-activated protein kinase in the Asp168-Phe169-Gly170-in (DFG-in) state can bind allosteric inhibitor Doramapimod. Suplatov D; Kopylov K; Sharapova Y; Švedas V J Biomol Struct Dyn; 2019 May; 37(8):2049-2060. PubMed ID: 29749295 [TBL] [Abstract][Full Text] [Related]
8. Contributions of water transfer energy to protein-ligand association and dissociation barriers: Watermap analysis of a series of p38α MAP kinase inhibitors. Pearlstein RA; Sherman W; Abel R Proteins; 2013 Sep; 81(9):1509-26. PubMed ID: 23468227 [TBL] [Abstract][Full Text] [Related]
9. A fluorescence-based assay for p38α recruitment site binders: identification of rooperol as a novel p38α kinase inhibitor. Li J; Kaoud TS; LeVieux J; Gilbreath B; Moharana S; Dalby KN; Kerwin SM Chembiochem; 2013 Jan; 14(1):66-71. PubMed ID: 23225637 [TBL] [Abstract][Full Text] [Related]
10. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase. Frembgen-Kesner T; Elcock AH J Mol Biol; 2006 May; 359(1):202-14. PubMed ID: 16616932 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with p38α MAP kinase. Yang Y; Shen Y; Liu H; Yao X J Chem Inf Model; 2011 Dec; 51(12):3235-46. PubMed ID: 22097958 [TBL] [Abstract][Full Text] [Related]
13. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach. Badrinarayan P; Sastry GN J Mol Graph Model; 2012 Apr; 34():89-100. PubMed ID: 22306417 [TBL] [Abstract][Full Text] [Related]
14. X-ray crystal structure of JNK2 complexed with the p38alpha inhibitor BIRB796: insights into the rational design of DFG-out binding MAP kinase inhibitors. Kuglstatter A; Ghate M; Tsing S; Villaseñor AG; Shaw D; Barnett JW; Browner MF Bioorg Med Chem Lett; 2010 Sep; 20(17):5217-20. PubMed ID: 20655210 [TBL] [Abstract][Full Text] [Related]
15. Potential Mean Force from Umbrella Sampling Simulations: What Can We Learn and What Is Missed? You W; Tang Z; Chang CA J Chem Theory Comput; 2019 Apr; 15(4):2433-2443. PubMed ID: 30811931 [TBL] [Abstract][Full Text] [Related]
16. Sequence, structure, and active site analyses of p38 MAP kinase: exploiting DFG-out conformation as a strategy to design new type II leads. Badrinarayan P; Sastry GN J Chem Inf Model; 2011 Jan; 51(1):115-29. PubMed ID: 21141877 [TBL] [Abstract][Full Text] [Related]
17. Insights from free-energy calculations: protein conformational equilibrium, driving forces, and ligand-binding modes. Huang YM; Chen W; Potter MJ; Chang CE Biophys J; 2012 Jul; 103(2):342-51. PubMed ID: 22853912 [TBL] [Abstract][Full Text] [Related]
18. Insight into the structural determinants of imidazole scaffold-based derivatives as p38 MAP kinase inhibitors by computational explorations. Huang C; Li Y; Ren H; Wang J; Shao L; Zhang S; Li G; Yang L Curr Med Chem; 2012; 19(23):4024-37. PubMed ID: 22680637 [TBL] [Abstract][Full Text] [Related]
19. FLiK: a direct-binding assay for the identification and kinetic characterization of stabilizers of inactive kinase conformations. Simard JR; Rauh D Methods Enzymol; 2014; 548():147-71. PubMed ID: 25399645 [TBL] [Abstract][Full Text] [Related]
20. X-ray structure of p38α bound to TAK-715: comparison with three classic inhibitors. Azevedo R; van Zeeland M; Raaijmakers H; Kazemier B; de Vlieg J; Oubrie A Acta Crystallogr D Biol Crystallogr; 2012 Aug; 68(Pt 8):1041-50. PubMed ID: 22868770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]