These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ab initio-based global double many-body expansion potential energy surface for the first 2A" electronic state of NO2. Mota VC; Caridade PJ; Varandas AJ J Phys Chem A; 2012 Mar; 116(11):3023-34. PubMed ID: 22332971 [TBL] [Abstract][Full Text] [Related]
4. Accurate ab initio-based double many-body expansion potential energy surface for the adiabatic ground-state of the C3 radical including combined Jahn-Teller plus pseudo-Jahn-Teller interactions. Rocha CM; Varandas AJ J Chem Phys; 2015 Aug; 143(7):074302. PubMed ID: 26298129 [TBL] [Abstract][Full Text] [Related]
5. Accurate ab-initio-based single-sheeted DMBE potential-energy surface for ground-state N2O. Li J; Varandas AJ J Phys Chem A; 2012 May; 116(18):4646-56. PubMed ID: 22494780 [TBL] [Abstract][Full Text] [Related]
6. Accurate double many-body expansion potential energy surface for the 2(1)A' state of N2O. Li J; Varandas AJ J Chem Phys; 2014 Aug; 141(8):084307. PubMed ID: 25173014 [TBL] [Abstract][Full Text] [Related]
7. Accurate double many-body expansion potential energy surface for N3((4)A'') from correlation scaled ab initio energies with extrapolation to the complete basis set limit. Galvão BR; Varandas AJ J Phys Chem A; 2009 Dec; 113(52):14424-30. PubMed ID: 19681622 [TBL] [Abstract][Full Text] [Related]
8. A global ab initio potential energy surface for the X2A' ground state of the Si + OH → SiO + H reaction. Dayou F; Duflot D; Rivero-Santamaría A; Monnerville M J Chem Phys; 2013 Nov; 139(20):204305. PubMed ID: 24289352 [TBL] [Abstract][Full Text] [Related]
9. Ab-initio-based global double many-body expansion potential energy surface for the electronic ground state of the ammonia molecule. Li YQ; Varandas AJ J Phys Chem A; 2010 Jun; 114(24):6669-80. PubMed ID: 20507132 [TBL] [Abstract][Full Text] [Related]
10. Global triplet potential energy surfaces for the N2(X(1)Σ) + O((3)P) → NO(X(2)Π) + N((4)S) reaction. Lin W; Varga Z; Song G; Paukku Y; Truhlar DG J Chem Phys; 2016 Jan; 144(2):024309. PubMed ID: 26772573 [TBL] [Abstract][Full Text] [Related]
11. Ab initio based DMBE potential energy surface for the ground electronic state of the C(2)H molecule. Joseph S; Varandas AJ J Phys Chem A; 2010 Feb; 114(7):2655-64. PubMed ID: 20121278 [TBL] [Abstract][Full Text] [Related]
12. Ab initio based double-sheeted DMBE potential energy surface for N3(2A″) and exploratory dynamics calculations. Galvão BR; Varandas AJ J Phys Chem A; 2011 Nov; 115(44):12390-8. PubMed ID: 21928767 [TBL] [Abstract][Full Text] [Related]
13. Accurate potential energy surface for the 1(2)A' state of NH(2): scaling of external correlation versus extrapolation to the complete basis set limit. Li YQ; Varandas AJ J Phys Chem A; 2010 Sep; 114(36):9644-54. PubMed ID: 20218704 [TBL] [Abstract][Full Text] [Related]
14. Global analytical ab initio ground-state potential energy surface for the C((1)D)+H2 reactive system. Zhang C; Fu M; Shen Z; Ma H; Bian W J Chem Phys; 2014 Jun; 140(23):234301. PubMed ID: 24952535 [TBL] [Abstract][Full Text] [Related]
15. High-accuracy DMBE potential energy surface for CNO(A''4) and the rate coefficients for the C + NO reaction in the A'2, A''2, and A''4 states. Alves MO; Mota VC; Braga JP; Varandas AJC; Guo H; Galvão BRL J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38054514 [TBL] [Abstract][Full Text] [Related]
16. New double many-body expansion potential energy surface for ground-state HCN from a multiproperty fit to accurate ab initio energies and rovibrational calculations. Varandas AJ; Rodrigues SP J Phys Chem A; 2006 Jan; 110(2):485-93. PubMed ID: 16405320 [TBL] [Abstract][Full Text] [Related]
17. HN2(2A') electronic manifold. II. Ab initio based double-sheeted DMBE potential energy surface via a global diabatization angle. Mota VC; Varandas AJ J Phys Chem A; 2008 Apr; 112(16):3768-86. PubMed ID: 18380492 [TBL] [Abstract][Full Text] [Related]
18. Photochemical reactions of the low-lying excited states of formaldehyde: T1/S0 intersystem crossings, characteristics of the S1 and T1 potential energy surfaces, and a global T1 potential energy surface. Zhang P; Maeda S; Morokuma K; Braams BJ J Chem Phys; 2009 Mar; 130(11):114304. PubMed ID: 19317536 [TBL] [Abstract][Full Text] [Related]
19. Globally accurate potential energy surface for the ground-state HCS(X Song YZ; Zhang LL; Gao SB; Meng QT Sci Rep; 2016 Nov; 6():37734. PubMed ID: 27898106 [TBL] [Abstract][Full Text] [Related]
20. Characterization of singlet ground and low-lying electronic excited states of phosphaethyne and isophosphaethyne. Ingels JB; Turney JM; Richardson NA; Yamaguchi Y; Schaefer HF J Chem Phys; 2006 Sep; 125(10):104306. PubMed ID: 16999525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]