These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 29620895)
1. Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations. Wang F; Chen L; Geng D; Wu J; Lu J; Wang C J Phys Chem A; 2018 Apr; 122(16):3971-3979. PubMed ID: 29620895 [TBL] [Abstract][Full Text] [Related]
2. Effect of density on the thermal decomposition mechanism of ε-CL-20: a ReaxFF reactive molecular dynamics simulation study. Wang F; Chen L; Geng D; Lu J; Wu J Phys Chem Chem Phys; 2018 Sep; 20(35):22600-22609. PubMed ID: 30116820 [TBL] [Abstract][Full Text] [Related]
3. The thermal decomposition process of Composition B by ReaxFF/lg force field. Meng J; Zhang S; Gou R; Chen Y; Li Y; Chen M; Li Z J Mol Model; 2020 Aug; 26(9):245. PubMed ID: 32820387 [TBL] [Abstract][Full Text] [Related]
4. Reactive Molecular Dynamics Simulations of the Thermal Decomposition Mechanism of 1,3,3-Trinitroazetidine. Junying WU; Yanxi H; Lijun Y; Deshen G; Fuping W; Heqi W; Lang C Chemphyschem; 2018 Oct; 19(20):2683-2695. PubMed ID: 30033624 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the decomposition mechanism of MTNP melt-cast explosive at different temperatures and pressures through ReaxFF/lg molecular dynamics simulations. Mao JS; Wang BG; Zhu R; Chen YF; Fu JB J Mol Model; 2023 Nov; 29(11):354. PubMed ID: 37910219 [TBL] [Abstract][Full Text] [Related]
6. Effects of Different Guests on Pyrolysis Mechanism of α-CL-20/Guest at High Temperatures by Reactive Molecular Dynamics Simulations at High Temperatures. Zhou M; Luo J; Xiang D Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768165 [TBL] [Abstract][Full Text] [Related]
7. Chemical reactions of a CL-20 crystal under heat and shock determined by ReaxFF reactive molecular dynamics simulations. Wang F; Chen L; Geng D; Lu J; Wu J Phys Chem Chem Phys; 2020 Oct; 22(40):23323-23332. PubMed ID: 33035287 [TBL] [Abstract][Full Text] [Related]
8. Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives. Mei Z; An Q; Zhao FQ; Xu SY; Ju XH Phys Chem Chem Phys; 2018 Nov; 20(46):29341-29350. PubMed ID: 30444501 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics simulation of initial thermal decomposition mechanism of DNTF. Bai H; Luo Y; Jiang J; Gou R; Zhang S; Hu W J Mol Model; 2022 Apr; 28(5):111. PubMed ID: 35368209 [TBL] [Abstract][Full Text] [Related]
10. Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20. Isayev O; Gorb L; Qasim M; Leszczynski J J Phys Chem B; 2008 Sep; 112(35):11005-13. PubMed ID: 18686996 [TBL] [Abstract][Full Text] [Related]
11. Reactive molecular dynamics simulations on the decomposition process of 1,3,5-trinitro-1,3,5-triazine crystal under high temperatures and pressure. Sun ZJ; Li H; Zhu W J Mol Model; 2023 Aug; 29(9):292. PubMed ID: 37615822 [TBL] [Abstract][Full Text] [Related]
12. ReaxFF molecular dynamics simulations on thermal decomposition of RDX-based CMDB propellants. Wei H; Li T; Yao K; Xuan Z J Mol Model; 2022 Nov; 28(12):388. PubMed ID: 36383257 [TBL] [Abstract][Full Text] [Related]
13. Decomposition mechanism scenarios of CL-20 co-crystals revealed by ReaxFF molecular dynamics: similarities and differences. Ren C; Liu H; Li X; Guo L Phys Chem Chem Phys; 2020 Feb; 22(5):2827-2840. PubMed ID: 31965130 [TBL] [Abstract][Full Text] [Related]
14. Reactive molecular dynamics simulations on thermal decomposition of 3-methyl-2,6-dinitrophenol. Zhao J; Xiao Y; He J; Wang J J Mol Model; 2022 Jan; 28(2):45. PubMed ID: 35079908 [TBL] [Abstract][Full Text] [Related]
15. First principles molecular dynamics simulation and thermal decomposition kinetics study of CL-20. Wu J; Hu J; Liu Q; Tang Y; Liu Y; Xiang W; Sun S; Suo Z J Mol Model; 2024 Jan; 30(2):33. PubMed ID: 38206411 [TBL] [Abstract][Full Text] [Related]
16. Effects of defects on thermal decomposition of HMX via ReaxFF molecular dynamics simulations. Zhou TT; Huang FL J Phys Chem B; 2011 Jan; 115(2):278-87. PubMed ID: 21142162 [TBL] [Abstract][Full Text] [Related]
17. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. Chenoweth K; Cheung S; van Duin AC; Goddard WA; Kober EM J Am Chem Soc; 2005 May; 127(19):7192-202. PubMed ID: 15884961 [TBL] [Abstract][Full Text] [Related]
18. Thermal Decomposition Mechanism of 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane Accelerated by Nano-Aluminum Hydride (AlH Zhao Y; Mei Z; Zhao FQ; Xu SY; Ju XH ACS Omega; 2020 Sep; 5(36):23193-23200. PubMed ID: 32954170 [TBL] [Abstract][Full Text] [Related]
19. Effects of Nanoparticle Size on the Thermal Decomposition Mechanisms of 3,5-Diamino-6-hydroxy-2-oxide-4-nitropyrimidone through ReaxFF Large-Scale Molecular Dynamics Simulations. Sun Z; Ji J; Zhu W Molecules; 2023 Dec; 29(1):. PubMed ID: 38202639 [TBL] [Abstract][Full Text] [Related]
20. Polymerization Effects on the Decomposition of a Pyrazolo-Triazine at high Temperatures and Pressures. Li Y; Wu J; Yang L; Geng D; Sultan M; Chen L ChemistryOpen; 2020 Apr; 9(4):470-479. PubMed ID: 32313787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]