These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29620965)

  • 1. Nonlinear Parametric Excitation Effect Induces Stability Transitions in Swimming Direction of Flexible Superparamagnetic Microswimmers.
    Harduf Y; Jin D; Or Y; Zhang L
    Soft Robot; 2018 Aug; 5(4):389-398. PubMed ID: 29620965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple model of a planar undulating magnetic microswimmer.
    Gutman E; Or Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013012. PubMed ID: 25122374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of a microscopic artificial swimmer.
    Gauger E; Stark H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021907. PubMed ID: 17025472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear dynamics and bifurcations of a planar undulating magnetic microswimmer.
    Paul J; Or Y; Gendelman OV
    Phys Rev E; 2023 May; 107(5-1):054211. PubMed ID: 37328970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propulsion Mechanism of Flexible Microbead Swimmers in the Low Reynolds Number Regime.
    Li YH; Chen SC
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between comoving magnetic microswimmers.
    Keaveny EE; Maxey MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041910. PubMed ID: 18517659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Swimming Performance of Photolithography-Based Microswimmers Using Curvature Structures.
    Tan L; Wang Z; Chen Z; Shi X; Cheang UK
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
    Setter E; Bucher I; Haber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tadpole-Like Flexible Microswimmers with the Head and Tail Both Magnetic.
    You M; Mou F; Wang K; Guan J
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40855-40863. PubMed ID: 37584677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable switching between planar and helical flagellar swimming of a soft robotic sperm.
    Khalil ISM; Tabak AF; Abou Seif M; Klingner A; Sitti M
    PLoS One; 2018; 13(11):e0206456. PubMed ID: 30388132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing an undulating magnetic microswimmer for cargo towing.
    Gutman E; Or Y
    Phys Rev E; 2016 Jun; 93(6):063105. PubMed ID: 27415356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetization directions and geometries of helical microswimmers for linear velocity-frequency response.
    Fu HC; Jabbarzadeh M; Meshkati F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043011. PubMed ID: 25974584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting and Optimizing Microswimmer Performance from the Hydrodynamics of Its Components: The Relevance of Interactions.
    Giuliani N; Heltai L; DeSimone A
    Soft Robot; 2018 Aug; 5(4):410-424. PubMed ID: 29762082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable Design and Performance of Modular Magnetic Microswimmers.
    Pauer C; du Roure O; Heuvingh J; Liedl T; Tavacoli J
    Adv Mater; 2021 Apr; 33(16):e2006237. PubMed ID: 33719137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of carrier transport induced by a microswimmer bath.
    Kaiser A; Sokolov A; Aranson IS; Löwen H
    IEEE Trans Nanobioscience; 2015 Apr; 14(3):260-6. PubMed ID: 25347885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twisting and buckling: a new undulation mechanism for artificial swimmers.
    Oukhaled G; Cebers A; Bacri JC; Di Meglio JM; Py C
    Eur Phys J E Soft Matter; 2012 Nov; 35(11):121. PubMed ID: 23179010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confined swimming of bio-inspired microrobots in rectangular channels.
    Temel FZ; Yesilyurt S
    Bioinspir Biomim; 2015 Feb; 10(1):016015. PubMed ID: 25642947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing dynamic behaviors of three-particle paramagnetic microswimmer near a solid surface.
    Wang Q; Yang L; Yu J; Zhang L
    Robotics Biomim; 2017; 4(1):20. PubMed ID: 29201603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of Lighthill's energetic efficiency of a minimal magnetic microswimmer.
    Calero C; García-Torres J; Ortiz-Ambriz A; Sagués F; Pagonabarraga I; Tierno P
    Nanoscale; 2019 Oct; 11(40):18723-18729. PubMed ID: 31589226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.