BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29621172)

  • 1. Cu(OH)₂ and CuO Nanorod Synthesis on Piezoresistive Cantilevers for the Selective Detection of Nitrogen Dioxide.
    Schlur L; Hofer M; Ahmad A; Bonnot K; Holz M; Spitzer D
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29621172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Organophosphorous Chemical Agents with CuO-Nanorod-Modified Microcantilevers.
    Schlur L; Agostini P; Thomas G; Gerer G; Grau J; Spitzer D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever.
    Schlur L; Calado JR; Spitzer D
    R Soc Open Sci; 2018 Aug; 5(8):180510. PubMed ID: 30225044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence and piezoresistive cantilever sensing of trinitrotoluene by an upper-rim tetrabenzimidazole conjugate of calix[4]arene and delineation of the features of the complex by molecular dynamics.
    Kandpal M; Bandela AK; Hinge VK; Rao VR; Rao CP
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13448-56. PubMed ID: 24320549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speciation of energetic materials on a microcantilever using surface reduction.
    Yi D; Senesac L; Thundat T
    Scanning; 2008; 30(2):208-12. PubMed ID: 18288710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized TiO
    Biapo U; Ghisolfi A; Gerer G; Spitzer D; Keller V; Cottineau T
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35122-35131. PubMed ID: 31468957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors.
    Mathew R; Ravi Sankar A
    Nanomicro Lett; 2018; 10(2):35. PubMed ID: 30393684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled reactions on a copper surface: synthesis and characterization of nanostructured copper compound films.
    Zhang W; Wen X; Yang S
    Inorg Chem; 2003 Aug; 42(16):5005-14. PubMed ID: 12895126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective detection of NO2 using Cr-doped CuO nanorods.
    Kim KM; Jeong HM; Kim HR; Choi KI; Kim HJ; Lee JH
    Sensors (Basel); 2012; 12(6):8013-25. PubMed ID: 22969384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p-p Heterojunction Sensors of
    Adamu BI; Falak A; Tian Y; Tan X; Meng X; Chen P; Wang H; Chu W
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8411-8421. PubMed ID: 31976643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper.
    Wu X; Bai H; Zhang J; Chen F; Shi G
    J Phys Chem B; 2005 Dec; 109(48):22836-42. PubMed ID: 16853975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays.
    Ghadimkhani G; de Tacconi NR; Chanmanee W; Janaky C; Rajeshwar K
    Chem Commun (Camb); 2013 Feb; 49(13):1297-9. PubMed ID: 23296091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors.
    Park S; Kim S; Sun GJ; In Lee W; Kim KK; Lee C
    Nanoscale Res Lett; 2014; 9(1):638. PubMed ID: 25489289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Growth of Copper Hydroxy Double Salt Films and Their Conversion to Nanostructured p-Type CuO Photocathodes.
    Cardiel AC; McDonald KJ; Choi KS
    Langmuir; 2017 Sep; 33(37):9262-9270. PubMed ID: 28570069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ synthesis of CuO and Cu nanostructures with promising electrochemical and wettability properties.
    Zhang Q; Xu D; Zhou X; Wu X; Zhang K
    Small; 2014 Mar; 10(5):935-43. PubMed ID: 24174010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room temperature synthesis of 2D CuO nanoleaves in aqueous solution.
    Zhao Y; Zhao J; Li Y; Ma D; Hou S; Li L; Hao X; Wang Z
    Nanotechnology; 2011 Mar; 22(11):115604. PubMed ID: 21297232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desorption characteristics of uncoated silicon microcantilever surfaces for explosive and common nonexplosive vapors.
    Pinnaduwage LA; Thundat T; Gehl A; Wilson SD; Hedden DL; Lareau RT
    Ultramicroscopy; 2004 Aug; 100(3-4):211-6. PubMed ID: 15231312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection.
    Setiono A; Bertke M; Nyang'au WO; Xu J; Fahrbach M; Kirsch I; Uhde E; Deutschinger A; Fantner EJ; Schwalb CH; Wasisto HS; Peiner E
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.
    Li C; Yamahara H; Lee Y; Tabata H; Delaunay JJ
    Nanotechnology; 2015 Jul; 26(30):305503. PubMed ID: 26159235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.
    Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C
    Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.