These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29621172)

  • 21.
    Yu L; Lv M; Zhang T; Zhou Q; Zhang J; Weng X; Ruan Y; Feng J
    Anal Methods; 2024 Feb; 16(5):731-741. PubMed ID: 38221887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tailoring the structure of metal oxide nanostructures towards enhanced sensing properties for environmental applications.
    Yang M; He J
    J Colloid Interface Sci; 2012 Feb; 368(1):41-8. PubMed ID: 22024372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An analytical model of joule heating in piezoresistive microcantilevers.
    Ansari MZ; Cho C
    Sensors (Basel); 2010; 10(11):9668-86. PubMed ID: 22163433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas.
    Yang M; He J; Hu X; Yan C; Cheng Z
    Environ Sci Technol; 2011 Jul; 45(14):6088-94. PubMed ID: 21699255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.
    Sekhar PK; Brosha EL; Mukundan R; Linker KL; Brusseau C; Garzon FH
    J Hazard Mater; 2011 Jun; 190(1-3):125-32. PubMed ID: 21435779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co(OH)
    Shi N; Sun S; Zhang B; Du Q; Liao Y; Liao X; Yin G; Huang Z; Pu X; Chen X
    Nanotechnology; 2020 Aug; 31(32):325502. PubMed ID: 32325440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Axial-stressed piezoresistive nanobeam for ultrahigh chemomechanical sensitivity to molecular adsorption.
    Chen Y; Xu P; Li X
    Anal Chem; 2012 Oct; 84(19):8184-9. PubMed ID: 22931207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process.
    Yao WT; Yu SH; Zhou Y; Jiang J; Wu QS; Zhang L; Jiang J
    J Phys Chem B; 2005 Jul; 109(29):14011-6. PubMed ID: 16852759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanomechanical cantilever sensors as a novel tool for real-time monitoring and characterization of surface layer formation.
    Koeser J; Bammerlin M; Battiston FM; Hubler U
    J Nanosci Nanotechnol; 2010 Apr; 10(4):2578-82. PubMed ID: 20355466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach.
    Fei X; Shao Z; Chen X
    Nanoscale; 2013 Sep; 5(17):7991-7. PubMed ID: 23863944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of Isolation and Immobilization Layers on the Electro-Mechanical Response of Piezoresistive Nano Cantilever Sensors.
    Mathew R; Sankar AR
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1636-1647. PubMed ID: 29448640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lithography inside Cu(OH)2 nanorods: a general route to controllable synthesis of the arrays of copper chalcogenide nanotubes with double walls.
    Xu J; Zhang W; Yang Z; Yang S
    Inorg Chem; 2008 Jan; 47(2):699-704. PubMed ID: 18078334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of CuO nanowalnuts and nanoribbons from aqueous solution and their catalytic and electrochemical properties.
    Yu Q; Huang H; Chen R; Wang P; Yang H; Gao M; Peng X; Ye Z
    Nanoscale; 2012 Apr; 4(8):2613-20. PubMed ID: 22426955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile fabrication of superhydrophobic Cu(OH)2 nanorod and CuO nanosheet arrays on copper surface.
    Guo Y; Wu H; Li Y; Jiang C; Wang Q; Wang T
    J Nanosci Nanotechnol; 2012 Mar; 12(3):1952-6. PubMed ID: 22755004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-dimensional copper hydroxide nitrate nanorods and nanobelts for radiochemical applications.
    Liu B
    Nanoscale; 2012 Nov; 4(22):7194-8. PubMed ID: 23070067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Confined condensation synthesis and magnetic properties of layered copper hydroxide frameworks.
    Park SH; Jung MH; Lee YJ; Huh YD
    Dalton Trans; 2017 Mar; 46(10):3363-3368. PubMed ID: 28233004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid free chlorine decay in the presence of Cu(OH)2: chemistry and practical implications.
    Nguyen CK; Powers KA; Raetz MA; Parks JL; Edwards MA
    Water Res; 2011 Oct; 45(16):5302-12. PubMed ID: 21868051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuO composite sorbents.
    Elwakeel KZ; Guibal E
    Carbohydr Polym; 2015 Dec; 134():190-204. PubMed ID: 26428116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoporous copper oxide ribbon assembly of free-standing nanoneedles as biosensors for glucose.
    Sun S; Sun Y; Chen A; Zhang X; Yang Z
    Analyst; 2015 Aug; 140(15):5205-15. PubMed ID: 26057132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.