BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29621239)

  • 21. The gene regulatory basis of genetic compensation during neural crest induction.
    Dooley CM; Wali N; Sealy IM; White RJ; Stemple DL; Collins JE; Busch-Nentwich EM
    PLoS Genet; 2019 Jun; 15(6):e1008213. PubMed ID: 31199790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio.
    Parichy DM; Ransom DG; Paw B; Zon LI; Johnson SL
    Development; 2000 Jul; 127(14):3031-44. PubMed ID: 10862741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Live Imaging of Neural Crest and Pigment Cells and Transient Transgenic Manipulation of Gene Activity.
    Ballim RD; Nagao Y; Kelsh RN
    Methods Mol Biol; 2019; 1976():195-206. PubMed ID: 30977075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The transcription factors Ets1 and Sox10 interact during murine melanocyte development.
    Saldana-Caboverde A; Perera EM; Watkins-Chow DE; Hansen NF; Vemulapalli M; Mullikin JC; ; Pavan WJ; Kos L
    Dev Biol; 2015 Nov; 407(2):300-12. PubMed ID: 25912689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Tomita collection of medaka pigmentation mutants as a resource for understanding neural crest cell development.
    Kelsh RN; Inoue C; Momoi A; Kondoh H; Furutani-Seiki M; Ozato K; Wakamatsu Y
    Mech Dev; 2004 Jul; 121(7-8):841-59. PubMed ID: 15210190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis.
    Singh AP; Dinwiddie A; Mahalwar P; Schach U; Linker C; Irion U; Nüsslein-Volhard C
    Dev Cell; 2016 Aug; 38(3):316-30. PubMed ID: 27453500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A zebrafish model for Waardenburg syndrome type IV reveals diverse roles for Sox10 in the otic vesicle.
    Dutton K; Abbas L; Spencer J; Brannon C; Mowbray C; Nikaido M; Kelsh RN; Whitfield TT
    Dis Model Mech; 2009; 2(1-2):68-83. PubMed ID: 19132125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A direct role for Sox10 in specification of neural crest-derived sensory neurons.
    Carney TJ; Dutton KA; Greenhill E; Delfino-Machín M; Dufourcq P; Blader P; Kelsh RN
    Development; 2006 Dec; 133(23):4619-30. PubMed ID: 17065232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rescue of neural crest-derived phenotypes in a zebrafish CHARGE model by Sox10 downregulation.
    Asad Z; Pandey A; Babu A; Sun Y; Shevade K; Kapoor S; Ullah I; Ranjan S; Scaria V; Bajpai R; Sachidanandan C
    Hum Mol Genet; 2016 Aug; 25(16):3539-3554. PubMed ID: 27418670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest.
    Curran K; Lister JA; Kunkel GR; Prendergast A; Parichy DM; Raible DW
    Dev Biol; 2010 Aug; 344(1):107-18. PubMed ID: 20460180
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Kimura T; Takehana Y; Naruse K
    G3 (Bethesda); 2017 Apr; 7(4):1357-1363. PubMed ID: 28258112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The N-terminal domain of gastrulation brain homeobox 2 (Gbx2) is required for iridophore specification in zebrafish.
    Hozumi S; Shirai M; Wang J; Aoki S; Kikuchi Y
    Biochem Biophys Res Commun; 2018 Jul; 502(1):104-109. PubMed ID: 29787751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulator of G protein signaling 2 (Rgs2) regulates neural crest development through Pparδ-Sox10 cascade.
    Lin SJ; Chiang MC; Shih HY; Hsu LS; Yeh TH; Huang YC; Lin CY; Cheng YC
    Biochim Biophys Acta Mol Cell Res; 2017 Mar; 1864(3):463-474. PubMed ID: 27979767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates.
    Dutton KA; Pauliny A; Lopes SS; Elworthy S; Carney TJ; Rauch J; Geisler R; Haffter P; Kelsh RN
    Development; 2001 Nov; 128(21):4113-25. PubMed ID: 11684650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zebrafish adult pigment stem cells are multipotent and form pigment cells by a progressive fate restriction process: Clonal analysis identifies shared origin of all pigment cell types.
    Kelsh RN; Sosa KC; Owen JP; Yates CA
    Bioessays; 2017 Mar; 39(3):. PubMed ID: 28009049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular fingerprinting delineates progenitor populations in the developing zebrafish enteric nervous system.
    Taylor CR; Montagne WA; Eisen JS; Ganz J
    Dev Dyn; 2016 Nov; 245(11):1081-1096. PubMed ID: 27565577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest.
    Minchin JE; Hughes SM
    Dev Biol; 2008 May; 317(2):508-22. PubMed ID: 18417109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Skeletal and pigment cell defects in the lockjaw mutant reveal multiple roles for zebrafish tfap2a in neural crest development.
    Knight RD; Javidan Y; Nelson S; Zhang T; Schilling T
    Dev Dyn; 2004 Jan; 229(1):87-98. PubMed ID: 14699580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal and cellular requirements for Fms signaling during zebrafish adult pigment pattern development.
    Parichy DM; Turner JM
    Development; 2003 Mar; 130(5):817-33. PubMed ID: 12538511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tfap2b specifies an embryonic melanocyte stem cell that retains adult multifate potential.
    Brombin A; Simpson DJ; Travnickova J; Brunsdon H; Zeng Z; Lu Y; Young AIJ; Chandra T; Patton EE
    Cell Rep; 2022 Jan; 38(2):110234. PubMed ID: 35021087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.