These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
547 related articles for article (PubMed ID: 29621349)
1. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae. Feng Q; Liu ZL; Weber SA; Li S PLoS One; 2018; 13(4):e0195633. PubMed ID: 29621349 [TBL] [Abstract][Full Text] [Related]
2. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386 [TBL] [Abstract][Full Text] [Related]
3. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Kim SR; Ha SJ; Kong II; Jin YS Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925 [TBL] [Abstract][Full Text] [Related]
4. Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains. Bracher JM; Martinez-Rodriguez OA; Dekker WJC; Verhoeven MD; van Maris AJA; Pronk JT FEMS Yeast Res; 2019 Jan; 19(1):. PubMed ID: 30252062 [TBL] [Abstract][Full Text] [Related]
5. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Hasunuma T; Ismail KSK; Nambu Y; Kondo A J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856 [TBL] [Abstract][Full Text] [Related]
6. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Walfridsson M; Hallborn J; Penttilä M; Keränen S; Hahn-Hägerdal B Appl Environ Microbiol; 1995 Dec; 61(12):4184-90. PubMed ID: 8534086 [TBL] [Abstract][Full Text] [Related]
7. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Kwak S; Jin YS Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization. Tomitaka M; Taguchi H; Fukuda K; Akamatsu T; Kida K J Biosci Bioeng; 2013 Dec; 116(6):706-15. PubMed ID: 23810666 [TBL] [Abstract][Full Text] [Related]
9. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041 [TBL] [Abstract][Full Text] [Related]
10. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
11. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Jin YS; Laplaza JM; Jeffries TW Appl Environ Microbiol; 2004 Nov; 70(11):6816-25. PubMed ID: 15528549 [TBL] [Abstract][Full Text] [Related]
12. In-Depth Two-Stage Transcriptional Reprogramming and Evolutionary Engineering of Zhang C; Xue Q; Hou J; Mohsin A; Zhang M; Guo M; Zhu Y; Bao J; Wang J; Xiao W; Cao L J Agric Food Chem; 2019 Oct; 67(43):12002-12012. PubMed ID: 31595746 [TBL] [Abstract][Full Text] [Related]
13. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Lu C; Jeffries T Appl Environ Microbiol; 2007 Oct; 73(19):6072-7. PubMed ID: 17693563 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
15. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Shen Y; Chen X; Peng B; Chen L; Hou J; Bao X Appl Microbiol Biotechnol; 2012 Nov; 96(4):1079-91. PubMed ID: 23053078 [TBL] [Abstract][Full Text] [Related]
16. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Matsushika A; Goshima T; Hoshino T Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867 [TBL] [Abstract][Full Text] [Related]
17. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. Hou J; Qiu C; Shen Y; Li H; Bao X FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582494 [TBL] [Abstract][Full Text] [Related]