These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 29621402)
1. Bacterial spore inactivation induced by cold plasma. Liao X; Muhammad AI; Chen S; Hu Y; Ye X; Liu D; Ding T Crit Rev Food Sci Nutr; 2019; 59(16):2562-2572. PubMed ID: 29621402 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores. van Bokhorst-van de Veen H; Xie H; Esveld E; Abee T; Mastwijk H; Nierop Groot M Food Microbiol; 2015 Feb; 45(Pt A):26-33. PubMed ID: 25481059 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma. Connor M; Flynn PB; Fairley DJ; Marks N; Manesiotis P; Graham WG; Gilmore BF; McGrath JW Sci Rep; 2017 Feb; 7():41814. PubMed ID: 28155914 [TBL] [Abstract][Full Text] [Related]
4. Use of Raman Spectroscopy and Phase-Contrast Microscopy To Characterize Cold Atmospheric Plasma Inactivation of Individual Bacterial Spores. Wang S; Doona CJ; Setlow P; Li YQ Appl Environ Microbiol; 2016 Oct; 82(19):5775-84. PubMed ID: 27422840 [TBL] [Abstract][Full Text] [Related]
5. An investigation of inactivation mechanisms of Bacillus amyloliquefaciens spores in non-thermal plasma of ambient air. Huang Y; Ye XP; Doona CJ; Feeherry FE; Radosevich M; Wang S J Sci Food Agric; 2019 Jan; 99(1):368-378. PubMed ID: 29888388 [TBL] [Abstract][Full Text] [Related]
6. Effect of High-pressure CO2 Processing on Bacterial Spores. Rao L; Bi X; Zhao F; Wu J; Hu X; Liao X Crit Rev Food Sci Nutr; 2016 Aug; 56(11):1808-25. PubMed ID: 25830663 [TBL] [Abstract][Full Text] [Related]
7. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations. Rozali SNM; Milani EA; Deed RC; Silva FVM Int J Food Microbiol; 2017 Dec; 263():17-25. PubMed ID: 29024903 [TBL] [Abstract][Full Text] [Related]
8. Effects of processing parameters on the inactivation of Bacillus cereus spores on red pepper (Capsicum annum L.) flakes by microwave-combined cold plasma treatment. Kim JE; Choi HS; Lee DU; Min SC Int J Food Microbiol; 2017 Dec; 263():61-66. PubMed ID: 29031105 [TBL] [Abstract][Full Text] [Related]
9. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. Patil S; Moiseev T; Misra NN; Cullen PJ; Mosnier JP; Keener KM; Bourke P J Hosp Infect; 2014 Nov; 88(3):162-9. PubMed ID: 25308932 [TBL] [Abstract][Full Text] [Related]
10. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation. Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Bacillus subtilis spore inactivation in low-pressure, low-temperature gas plasma sterilization processes. Roth S; Feichtinger J; Hertel C J Appl Microbiol; 2010 Feb; 108(2):521-31. PubMed ID: 19659696 [TBL] [Abstract][Full Text] [Related]
12. Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Wells-Bennik MH; Eijlander RT; den Besten HM; Berendsen EM; Warda AK; Krawczyk AO; Nierop Groot MN; Xiao Y; Zwietering MH; Kuipers OP; Abee T Annu Rev Food Sci Technol; 2016; 7():457-82. PubMed ID: 26934174 [TBL] [Abstract][Full Text] [Related]
13. Recent Advances in the Application of the Antimicrobial Peptide Nisin in the Inactivation of Spore-Forming Bacteria in Foods. Anumudu C; Hart A; Miri T; Onyeaka H Molecules; 2021 Sep; 26(18):. PubMed ID: 34577022 [TBL] [Abstract][Full Text] [Related]
14. [Inactivation of bacterial spores using low-temperature plasma]. Shi XM; Zhang GJ; Yuan YK; Ma Y; Xu GM; Gu N Nan Fang Yi Ke Da Xue Xue Bao; 2009 Oct; 29(10):2033-6. PubMed ID: 19861259 [TBL] [Abstract][Full Text] [Related]
15. Label free quantitative analysis of Alicyclobacillus acidoterrestris spore germination subjected to low ambient pH. Xu X; Ran J; Jiao L; Liang X; Zhao R Food Res Int; 2019 Jan; 115():580-588. PubMed ID: 30599982 [TBL] [Abstract][Full Text] [Related]
16. Determination of spore inactivation during thermal and pressure-assisted thermal processing using FT-IR spectroscopy. Subramanian A; Ahn J; Balasubramaniam VM; Rodriguez-Saona L J Agric Food Chem; 2006 Dec; 54(26):10300-6. PubMed ID: 17177574 [TBL] [Abstract][Full Text] [Related]
17. Cold-air atmospheric pressure plasma against Clostridium difficile spores: a potential alternative for the decontamination of hospital inanimate surfaces. Claro T; Cahill OJ; O'Connor N; Daniels S; Humphreys H Infect Control Hosp Epidemiol; 2015 Jun; 36(6):742-4. PubMed ID: 25782039 [TBL] [Abstract][Full Text] [Related]
18. A lattice model based on percolation theory for cold atmospheric DBD plasma decontamination kinetics. Wang H; Wu Q; Zhang L; Luo H; Wang X; Tie J; Ren Z Food Res Int; 2024 Feb; 177():113918. PubMed ID: 38225119 [TBL] [Abstract][Full Text] [Related]
19. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Butscher D; Van Loon H; Waskow A; Rudolf von Rohr P; Schuppler M Int J Food Microbiol; 2016 Dec; 238():222-232. PubMed ID: 27668570 [TBL] [Abstract][Full Text] [Related]
20. Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific Krawczyk AO; de Jong A; Omony J; Holsappel S; Wells-Bennik MHJ; Kuipers OP; Eijlander RT Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]