These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 29621428)
1. Hematopoietic cells as site of first-pass catabolism after subcutaneous dosing and contributors to systemic clearance of a monoclonal antibody in mice. Richter WF; Christianson GJ; Frances N; Grimm HP; Proetzel G; Roopenian DC MAbs; 2018 Jul; 10(5):803-813. PubMed ID: 29621428 [TBL] [Abstract][Full Text] [Related]
2. Subcutaneous bioavailability of therapeutic antibodies as a function of FcRn binding affinity in mice. Deng R; Meng YG; Hoyte K; Lutman J; Lu Y; Iyer S; DeForge LE; Theil FP; Fielder PJ; Prabhu S MAbs; 2012; 4(1):101-9. PubMed ID: 22327433 [TBL] [Abstract][Full Text] [Related]
3. Application of human FcRn transgenic mice as a pharmacokinetic screening tool of monoclonal antibody. Haraya K; Tachibana T; Nanami M; Ishigai M Xenobiotica; 2014 Dec; 44(12):1127-34. PubMed ID: 25030041 [TBL] [Abstract][Full Text] [Related]
4. Model-Based Assessment of the Contribution of Monocytes and Macrophages to the Pharmacokinetics of Monoclonal Antibodies. Malik PRV; Hamadeh A; Edginton AN Pharm Res; 2022 Feb; 39(2):239-250. PubMed ID: 35118567 [TBL] [Abstract][Full Text] [Related]
5. Utility of a human FcRn transgenic mouse model in drug discovery for early assessment and prediction of human pharmacokinetics of monoclonal antibodies. Avery LB; Wang M; Kavosi MS; Joyce A; Kurz JC; Fan YY; Dowty ME; Zhang M; Zhang Y; Cheng A; Hua F; Jones HM; Neubert H; Polzer RJ; O'Hara DM MAbs; 2016; 8(6):1064-78. PubMed ID: 27232760 [TBL] [Abstract][Full Text] [Related]
6. Modification of the Fc Region of a Human Anti-oncostatin M Monoclonal Antibody for Higher Affinity to FcRn Receptor and Extension of Half-life in Cynomolgus Monkeys. Nnane IP; Han C; Jiao Q; Tam SH; Davis HM; Xu Z Basic Clin Pharmacol Toxicol; 2017 Jul; 121(1):13-21. PubMed ID: 28132416 [TBL] [Abstract][Full Text] [Related]
7. Contribution of FcRn binding to intestinal uptake of IgG in suckling rat pups and human FcRn-transgenic mice. Kliwinski C; Cooper PR; Perkinson R; Mabus JR; Tam SH; Wilkinson TM; Giles-Komar J; Scallon B; Powers GD; Hornby PJ Am J Physiol Gastrointest Liver Physiol; 2013 Feb; 304(3):G262-70. PubMed ID: 23220220 [TBL] [Abstract][Full Text] [Related]
8. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: A comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach. Betts A; Keunecke A; van Steeg TJ; van der Graaf PH; Avery LB; Jones H; Berkhout J MAbs; 2018 Jul; 10(5):751-764. PubMed ID: 29634430 [TBL] [Abstract][Full Text] [Related]
9. Minipig as a potential translatable model for monoclonal antibody pharmacokinetics after intravenous and subcutaneous administration. Zheng Y; Tesar DB; Benincosa L; Birnböck H; Boswell CA; Bumbaca D; Cowan KJ; Danilenko DM; Daugherty AL; Fielder PJ; Grimm HP; Joshi A; Justies N; Kolaitis G; Lewin-Koh N; Li J; McVay S; O'Mahony J; Otteneder M; Pantze M; Putnam WS; Qiu ZJ; Ruppel J; Singer T; Stauch O; Theil FP; Visich J; Yang J; Ying Y; Khawli LA; Richter WF MAbs; 2012; 4(2):243-55. PubMed ID: 22453096 [TBL] [Abstract][Full Text] [Related]
10. A Minimal Physiologically Based Pharmacokinetic Model with a Nested Endosome Compartment for Novel Engineered Antibodies. Yuan D; Rode F; Cao Y AAPS J; 2018 Mar; 20(3):48. PubMed ID: 29541870 [TBL] [Abstract][Full Text] [Related]
11. A Physiologically-Based Pharmacokinetic Model for the Prediction of Monoclonal Antibody Pharmacokinetics From In Vitro Data. Jones HM; Zhang Z; Jasper P; Luo H; Avery LB; King LE; Neubert H; Barton HA; Betts AM; Webster R CPT Pharmacometrics Syst Pharmacol; 2019 Oct; 8(10):738-747. PubMed ID: 31464379 [TBL] [Abstract][Full Text] [Related]
13. A minimal physiologically based pharmacokinetic model to investigate FcRn-mediated monoclonal antibody salvage: Effects of K Maas BM; Cao Y MAbs; 2018; 10(8):1322-1331. PubMed ID: 30130450 [TBL] [Abstract][Full Text] [Related]
14. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies. Stracke J; Emrich T; Rueger P; Schlothauer T; Kling L; Knaupp A; Hertenberger H; Wolfert A; Spick C; Lau W; Drabner G; Reiff U; Koll H; Papadimitriou A MAbs; 2014; 6(5):1229-42. PubMed ID: 25517308 [TBL] [Abstract][Full Text] [Related]
15. Pharmacokinetics of humanized monoclonal anti-tumor necrosis factor-{alpha} antibody and its neonatal Fc receptor variants in mice and cynomolgus monkeys. Deng R; Loyet KM; Lien S; Iyer S; DeForge LE; Theil FP; Lowman HB; Fielder PJ; Prabhu S Drug Metab Dispos; 2010 Apr; 38(4):600-5. PubMed ID: 20071453 [TBL] [Abstract][Full Text] [Related]
16. Toward in vitro-to-in vivo translation of monoclonal antibody pharmacokinetics: Application of a neonatal Fc receptor-mediated transcytosis assay to understand the interplaying clearance mechanisms. Jaramillo CAC; Belli S; Cascais AC; Dudal S; Edelmann MR; Haak M; Brun ME; Otteneder MB; Ullah M; Funk C; Schuler F; Simon S MAbs; 2017 Jul; 9(5):781-791. PubMed ID: 28440708 [TBL] [Abstract][Full Text] [Related]
17. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. Piche-Nicholas NM; Avery LB; King AC; Kavosi M; Wang M; O'Hara DM; Tchistiakova L; Katragadda M MAbs; 2018 Jan; 10(1):81-94. PubMed ID: 28991504 [TBL] [Abstract][Full Text] [Related]
18. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. Shah DK; Betts AM J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):67-86. PubMed ID: 22143261 [TBL] [Abstract][Full Text] [Related]