These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 29621495)
1. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1. Almarwani B; Phambu EN; Alexander C; Nguyen HAT; Phambu N; Sunda-Meya A Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1394-1402. PubMed ID: 29621495 [TBL] [Abstract][Full Text] [Related]
2. Calorimetric and Spectroscopic Studies of the Effects of the Cell Penetrating Peptide Pep-1 and the Antimicrobial Peptide Combi-2 on Vesicles Mimicking Escherichia coli Membrane. Phambu N; Almarwani B; Alwadai A; Phambu EN; Faciane N; Marion C; Sunda-Meya A Langmuir; 2017 Nov; 33(45):12908-12915. PubMed ID: 29039950 [TBL] [Abstract][Full Text] [Related]
3. Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Henriques ST; Costa J; Castanho MA Biochemistry; 2005 Aug; 44(30):10189-98. PubMed ID: 16042396 [TBL] [Abstract][Full Text] [Related]
4. Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance. Henriques ST; Castanho MA; Pattenden LK; Aguilar MI Biopolymers; 2010; 94(3):314-22. PubMed ID: 20049920 [TBL] [Abstract][Full Text] [Related]
5. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669 [TBL] [Abstract][Full Text] [Related]
6. S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: implications for cell internalization. Cardoso AM; Trabulo S; Cardoso AL; Lorents A; Morais CM; Gomes P; Nunes C; LĂșcio M; Reis S; Padari K; Pooga M; Pedroso de Lima MC; Jurado AS Biochim Biophys Acta; 2012 Mar; 1818(3):877-88. PubMed ID: 22230348 [TBL] [Abstract][Full Text] [Related]
7. Chain length effect on the structure and stability of antimicrobial peptides of the (RW) Phambu N; Almarwani B; Garcia AM; Hamza NS; Muhsen A; Baidoo JE; Sunda-Meya A Biophys Chem; 2017 Aug; 227():8-13. PubMed ID: 28578996 [TBL] [Abstract][Full Text] [Related]
8. Interactions of amphipathic CPPs with model membranes. Deshayes S; Konate K; Aldrian G; Heitz F; Divita G Methods Mol Biol; 2011; 683():41-56. PubMed ID: 21053121 [TBL] [Abstract][Full Text] [Related]
9. Molecular interactions between cell penetrating peptide Pep-1 and model cell membranes. Ding B; Chen Z J Phys Chem B; 2012 Mar; 116(8):2545-52. PubMed ID: 22292835 [TBL] [Abstract][Full Text] [Related]
10. Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes. Sharonov A; Hochstrasser RM Biochemistry; 2007 Jul; 46(27):7963-72. PubMed ID: 17567046 [TBL] [Abstract][Full Text] [Related]
11. Re-evaluating the role of strongly charged sequences in amphipathic cell-penetrating peptides: a fluorescence study using Pep-1. Henriques ST; Costa J; Castanho MA FEBS Lett; 2005 Aug; 579(20):4498-502. PubMed ID: 16083883 [TBL] [Abstract][Full Text] [Related]
13. The Contribution of Differential Scanning Calorimetry for the Study of Peptide/Lipid Interactions. Jobin ML; Alves ID Methods Mol Biol; 2019; 1964():3-15. PubMed ID: 30929231 [TBL] [Abstract][Full Text] [Related]
14. The thin line between cell-penetrating and antimicrobial peptides: the case of Pep-1 and Pep-1-K. Bobone S; Piazzon A; Orioni B; Pedersen JZ; Nan YH; Hahm KS; Shin SY; Stella L J Pept Sci; 2011 May; 17(5):335-41. PubMed ID: 21294230 [TBL] [Abstract][Full Text] [Related]
15. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures. Meloni BP; Craig AJ; Milech N; Hopkins RM; Watt PM; Knuckey NW Cell Mol Neurobiol; 2014 Mar; 34(2):173-81. PubMed ID: 24213248 [TBL] [Abstract][Full Text] [Related]
16. Environmental factors that enhance the action of the cell penetrating peptide pep-1 A spectroscopic study using lipidic vesicles. Henriques ST; Castanho MA Biochim Biophys Acta; 2005 May; 1669(2):75-86. PubMed ID: 15893509 [TBL] [Abstract][Full Text] [Related]
17. The penetrating properties of the tumor homing peptide LyP-1 in model lipid membranes. Ciobanasu C; Dragomir I; Apetrei A J Pept Sci; 2019 Mar; 25(3):e3145. PubMed ID: 30588706 [TBL] [Abstract][Full Text] [Related]
18. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Zhu WL; Lan H; Park IS; Kim JI; Jin HZ; Hahm KS; Shin SY Biochem Biophys Res Commun; 2006 Oct; 349(2):769-74. PubMed ID: 16945333 [TBL] [Abstract][Full Text] [Related]
19. Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide. Meerovich I; Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Pellois JP Biochim Biophys Acta; 2014 Jan; 1840(1):507-15. PubMed ID: 24135456 [TBL] [Abstract][Full Text] [Related]
20. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]