These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 29621495)
41. The enhanced membrane interaction and perturbation of a cell penetrating peptide in the presence of anionic lipids: toward an understanding of its selectivity for cancer cells. Jobin ML; Bonnafous P; Temsamani H; Dole F; Grélard A; Dufourc EJ; Alves ID Biochim Biophys Acta; 2013 Jun; 1828(6):1457-70. PubMed ID: 23462641 [TBL] [Abstract][Full Text] [Related]
42. Biophysical Insight on the Membrane Insertion of an Arginine-Rich Cell-Penetrating Peptide. Jobin ML; Vamparys L; Deniau R; Grélard A; Mackereth CD; Fuchs PFJ; Alves ID Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31505894 [TBL] [Abstract][Full Text] [Related]
43. Studies of membranotropic and fusogenic activity of two putative HCV fusion peptides. Gonzalez S; Gallier F; Kellouche S; Carreiras F; Novellino E; Carotenuto A; Chassaing G; Rovero P; Uziel J; Lubin-Germain N Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):50-61. PubMed ID: 30343120 [TBL] [Abstract][Full Text] [Related]
44. Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Joanne P; Galanth C; Goasdoué N; Nicolas P; Sagan S; Lavielle S; Chassaing G; El Amri C; Alves ID Biochim Biophys Acta; 2009 Sep; 1788(9):1772-81. PubMed ID: 19427300 [TBL] [Abstract][Full Text] [Related]
45. Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles. Henriques ST; Castanho MA Biochemistry; 2004 Aug; 43(30):9716-24. PubMed ID: 15274626 [TBL] [Abstract][Full Text] [Related]
46. A Pathway Toward Tumor Cell-Selective CPPs? Alves ID; Carré M; Lavielle S Methods Mol Biol; 2015; 1324():279-301. PubMed ID: 26202276 [TBL] [Abstract][Full Text] [Related]
47. Direct translocation of cell-penetrating peptides in liposomes: a combined mass spectrometry quantification and fluorescence detection study. Walrant A; Matheron L; Cribier S; Chaignepain S; Jobin ML; Sagan S; Alves ID Anal Biochem; 2013 Jul; 438(1):1-10. PubMed ID: 23524021 [TBL] [Abstract][Full Text] [Related]
48. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature. Katayama S; Nakase I; Yano Y; Murayama T; Nakata Y; Matsuzaki K; Futaki S Biochim Biophys Acta; 2013 Sep; 1828(9):2134-42. PubMed ID: 23711826 [TBL] [Abstract][Full Text] [Related]
49. Interactions of an anionic antimicrobial peptide with Staphylococcus aureus membranes. Dennison SR; Howe J; Morton LH; Brandenburg K; Harris F; Phoenix DA Biochem Biophys Res Commun; 2006 Sep; 347(4):1006-10. PubMed ID: 16857163 [TBL] [Abstract][Full Text] [Related]
51. Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity. Blondelle SE; Lohner K; Aguilar M Biochim Biophys Acta; 1999 Dec; 1462(1-2):89-108. PubMed ID: 10590304 [TBL] [Abstract][Full Text] [Related]
52. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Papo N; Shai Y Biochemistry; 2003 Aug; 42(31):9346-54. PubMed ID: 12899621 [TBL] [Abstract][Full Text] [Related]
53. Is there anybody in there? On the mechanisms of wall crossing of cell penetrating peptides. Alves ID; Walrant A; Bechara C; Sagan S Curr Protein Pept Sci; 2012 Nov; 13(7):658-71. PubMed ID: 23131191 [TBL] [Abstract][Full Text] [Related]
54. Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis. Deshayes S; Heitz A; Morris MC; Charnet P; Divita G; Heitz F Biochemistry; 2004 Feb; 43(6):1449-57. PubMed ID: 14769021 [TBL] [Abstract][Full Text] [Related]
55. Oligoarginine vectors for intracellular delivery: role of arginine side-chain orientation in chain length-dependent destabilization of lipid membranes. Bouchet AM; Lairion F; Ruysschaert JM; Lensink MF Chem Phys Lipids; 2012 Jan; 165(1):89-96. PubMed ID: 22119850 [TBL] [Abstract][Full Text] [Related]
56. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions. Hoernke M; Schwieger C; Kerth A; Blume A Biochim Biophys Acta; 2012 Jul; 1818(7):1663-72. PubMed ID: 22433675 [TBL] [Abstract][Full Text] [Related]
57. Penetration of three transmembrane segments of Slc11a1 in lipid bilayers. Qi H; Wang Y; Chu H; Wang W; Mao Q Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():82-92. PubMed ID: 24299979 [TBL] [Abstract][Full Text] [Related]
58. Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. Walrant A; Correia I; Jiao CY; Lequin O; Bent EH; Goasdoué N; Lacombe C; Chassaing G; Sagan S; Alves ID Biochim Biophys Acta; 2011 Jan; 1808(1):382-93. PubMed ID: 20920465 [TBL] [Abstract][Full Text] [Related]
59. Translocation of 5' mRNA cap analogue--peptide conjugates across the membranes of giant unilamellar vesicles. Worch R; Piecyk K; Kolasa AB; Jankowska-Anyszka M Biochim Biophys Acta; 2016 Feb; 1858(2):311-7. PubMed ID: 26654783 [TBL] [Abstract][Full Text] [Related]
60. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes. Takechi Y; Tanaka H; Kitayama H; Yoshii H; Tanaka M; Saito H Chem Phys Lipids; 2012 Jan; 165(1):51-8. PubMed ID: 22108318 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]