BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29621704)

  • 1. PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa.
    Zhang M; Wang X; Tao J; Li S; Hao S; Zhu X; Hong Y
    Ecotoxicol Environ Saf; 2018 Aug; 157():134-142. PubMed ID: 29621704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth, physiological responses and microcystin-production/-release dynamics of Microcystis aeruginosa exposed to various luteolin doses.
    Li J; Hu J; Cao L; Yuan Y
    Ecotoxicol Environ Saf; 2020 Jun; 196():110540. PubMed ID: 32251950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low concentrations of polycyclic aromatic hydrocarbons promote the growth of Microcystis aeruginosa.
    Zhu X; Kong H; Gao Y; Wu M; Kong F
    J Hazard Mater; 2012 Oct; 237-238():371-5. PubMed ID: 22954602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.
    Chen L; Mao F; Kirumba GC; Jiang C; Manefield M; He Y
    Ecotoxicol Environ Saf; 2015 Dec; 122():126-35. PubMed ID: 26232039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated pCO2 causes a shift towards more toxic microcystin variants in nitrogen-limited Microcystis aeruginosa.
    Liu J; Van Oosterhout E; Faassen EJ; Lürling M; Helmsing NR; Van de Waal DB
    FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26676057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions.
    Chia MA; Cordeiro-Araújo MK; Lorenzi AS; Bittencourt-Oliveira MDC
    Ecotoxicol Environ Saf; 2017 Aug; 142():189-199. PubMed ID: 28411514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins.
    Shen F; Wang L; Zhou Q; Huang X
    Aquat Toxicol; 2018 Mar; 196():9-16. PubMed ID: 29324395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biometric and physiological responses of Egeria densa Planch. cultivated with toxic and non-toxic strains of Microcystis.
    Amorim CA; Ulisses C; Moura AN
    Aquat Toxicol; 2017 Oct; 191():201-208. PubMed ID: 28846860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of gibberellin A(3) on growth and microcystin production in Microcystis aeruginosa (cyanophyta).
    Pan X; Chang F; Kang L; Liu Y; Li G; Li D
    J Plant Physiol; 2008 Nov; 165(16):1691-7. PubMed ID: 18395293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nonylphenol on the growth and microcystin production of Microcystis strains.
    Wang J; Xie P; Guo N
    Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of Daphnia's antioxidant system to spatial heterogeneity in Cyanobacteria concentrations in a lowland reservoir.
    Wojtal-Frankiewicz A; Bernasińska J; Frankiewicz P; Gwoździński K; Jurczak T
    PLoS One; 2014; 9(11):e112597. PubMed ID: 25380273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of growth and microcystin production of Microcystis aeruginosa exposed to low concentrations of naphthalene and phenanthrene under different pH values.
    Huang Y; Pan H; Liu H; Xi Y; Ren D
    Toxicon; 2019 Nov; 169():103-108. PubMed ID: 31494204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta).
    Xiao Y; Liu Y; Wang G; Hao Z; An Y
    Toxicon; 2010 Aug; 56(1):1-7. PubMed ID: 20156472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl.
    Du Y; Ye J; Wu L; Yang C; Wang L; Hu X
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7752-7763. PubMed ID: 28127689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenanthrene and pyrene disturbed the growth of Microcystis aeruginosa as co-cultured with Chlorella pyrenoidosa.
    Wang X; Zhu X; Chen X; Lv B; Wang X; Wang D
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45957-45964. PubMed ID: 33067791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Microcystis aeruginosa Peptides Responsible for Allergic Sensitization and Characterization of Functional Interactions between Cyanobacterial Toxins and Immunogenic Peptides.
    Geh EN; Ghosh D; McKell M; de la Cruz AA; Stelma G; Bernstein JA
    Environ Health Perspect; 2015 Nov; 123(11):1159-66. PubMed ID: 25902363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.
    Chen L; Gin KY; He Y
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3586-95. PubMed ID: 26490939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905.
    Wang C; Wang X; Wang P; Chen B; Hou J; Qian J; Yang Y
    Ecotoxicol Environ Saf; 2016 Oct; 132():231-9. PubMed ID: 27337497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of metals on the uptake of polycyclic aromatic hydrocarbons by the cyanobacterium Microcystis aeruginosa.
    Tao Y; Xue B; Yang Z; Yao S; Li S
    Chemosphere; 2015 Jan; 119():719-726. PubMed ID: 25180823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between Photosynthetic Capacity and Microcystin Production in Toxic
    Wang X; Wang P; Wang C; Qian J; Feng T; Yang Y
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30205471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.