These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 2962191)

  • 21. Structure and function of microplasminogen: reconstitution of microplasminogen and microplasmin from isolated fragments.
    de los Santos T; Wang J; Reich E
    Ciba Found Symp; 1997; 212():66-76; discussion 76-83. PubMed ID: 9524764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential vitreous dye diffusion following microplasmin or plasmin pre-treatment.
    Gad Elkareem AM; Willikens B; Stassen JM; de Smet MD
    Curr Eye Res; 2010 Mar; 35(3):235-41. PubMed ID: 20373883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical synthesis and characterization of the sweet protein mabinlin II.
    Kohmura M; Ariyoshi Y
    Biopolymers; 1998 Oct; 46(4):215-23. PubMed ID: 9715665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron microscopic studies of plasmic degradation products of fibrinogen. Implications for the disulfide structure of fibrinogen.
    Tranqui-Pouit L; Marder VJ; Suscillon M; Budzynski AZ; Hudry-Clergeon G
    Biochim Biophys Acta; 1975 Aug; 400(2):189-99. PubMed ID: 126081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombinant human microplasmin: production and potential therapeutic properties.
    Nagai N; Demarsin E; Van Hoef B; Wouters S; Cingolani D; Laroche Y; Collen D
    J Thromb Haemost; 2003 Feb; 1(2):307-13. PubMed ID: 12871505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The primary structure of human free secretory component and the arrangement of disulfide bonds].
    Eiffert H; Quentin E; Decker J; Hillemeir S; Hufschmidt M; Klingmüller D; Weber MH; Hilschmann N
    Hoppe Seylers Z Physiol Chem; 1984 Dec; 365(12):1489-95. PubMed ID: 6526384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficacy of plasmin, microplasmin, and streptokinase-plasmin complex for the in vitro degradation of fibronectin and laminin- implications for vitreoretinal surgery.
    Hermel M; Dailey W; Hartzer MK
    Curr Eye Res; 2010 May; 35(5):419-24. PubMed ID: 20450255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Primary structure of mannuronate lyases SP1 and SP2 from Turbo cornutus and involvement of the hydrophobic C-terminal residues in the protein stability.
    Muramatsu T; Komori K; Sakurai N; Yamada K; Awasaki Y; Fukuda K; Oda T
    J Protein Chem; 1996 Nov; 15(8):709-19. PubMed ID: 9008294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High molecular weight derivatives of human fibrinogen produced by plasmin. 3. Their NH2-terminal amino acids and comparison with the "NH2-terminal disulfide knot".
    Marder VJ; Budzyński AZ; James HL
    J Biol Chem; 1972 Aug; 247(15):4775-81. PubMed ID: 4262216
    [No Abstract]   [Full Text] [Related]  

  • 30. The hemoglobins of the bullfrog Rana catesbeiana. The structure of the beta chain of component C and the role of the alpha chain in the formation of intermolecular disulfide bonds.
    Tam LT; Gray GP; Riggs AF
    J Biol Chem; 1986 Jun; 261(18):8290-4. PubMed ID: 3487542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Location of the interchain disulfide bonds of the fourth component of human complement (C4): evidence based on the liberation of fragments secondary to thiol-disulfide interchange reactions.
    Seya T; Nagasawa S; Atkinson JP
    J Immunol; 1986 Jun; 136(11):4152-6. PubMed ID: 3701066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human fibrinogen heterogeneity: the COOH-terminal residues of defective A alpha chains of fibrinogen II.
    Nakashima A; Sasaki S; Miyazaki K; Miyata T; Iwanaga S
    Blood Coagul Fibrinolysis; 1992 Aug; 3(4):361-70. PubMed ID: 1420813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological regulation through protein disulfide bond cleavage.
    Hogg PJ
    Redox Rep; 2002; 7(2):71-7. PubMed ID: 12189052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amino acid sequence and location of the disulfide bonds in bovine beta 2 glycoprotein I: the presence of five Sushi domains.
    Kato H; Enjyoji K
    Biochemistry; 1991 Dec; 30(50):11687-94. PubMed ID: 1751487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fragmentation of porcine beta-lipotropic hormone with plasmin.
    Gráf L
    Acta Biochim Biophys Acad Sci Hung; 1976; 11(4):267-77. PubMed ID: 140580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assignment of the disulfide bonds in napin, a seed storage protein from Brassica napus, using matrix-assisted laser desorption ionization mass spectrometry.
    Gehrig PM; Biemann K
    Pept Res; 1996; 9(6):308-14. PubMed ID: 9048425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization of the cleavage sites on fibronectin following digestion by urokinase.
    Gold LI; Rostagno A; Frangione B; Passalaris T
    J Cell Biochem; 1992 Dec; 50(4):441-52. PubMed ID: 1469074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability.
    Hodges RS; Zhou NE; Kay CM; Semchuk PD
    Pept Res; 1990; 3(3):123-37. PubMed ID: 2134057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Primary structural analysis of sulfhydryl protease inhibitors from pineapple stem.
    Reddy MN; Keim PS; Heinrikson RL; Kezdy FJ
    J Biol Chem; 1975 Mar; 250(5):1741-50. PubMed ID: 1112827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Domain structure and conformation of histidine-proline-rich glycoprotein.
    Borza DB; Tatum FM; Morgan WT
    Biochemistry; 1996 Feb; 35(6):1925-34. PubMed ID: 8639676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.