BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29622920)

  • 21. Detection of conspicuous and cryptic food by common marmosets (Callithrix jacchus): An evaluation of the importance of color and shape cues.
    Barros PKS; Castro FN; Pessoa DMA
    Behav Processes; 2021 Nov; 192():104495. PubMed ID: 34487831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The number of discernible colors perceived by dichromats in natural scenes and the effects of colored lenses.
    Linhares JM; Pinto PD; Nascimento SM
    Vis Neurosci; 2008; 25(3):493-9. PubMed ID: 18598424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trichromatic perception of flower colour improves resource detection among New World monkeys.
    Hogan JD; Fedigan LM; Hiramatsu C; Kawamura S; Melin AD
    Sci Rep; 2018 Jul; 8(1):10883. PubMed ID: 30022096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in humans.
    Saito A; Mikami A; Hosokawa T; Hasegawa T
    Percept Mot Skills; 2006 Feb; 102(1):3-12. PubMed ID: 16671590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The heterozygote superiority hypothesis for polymorphic color vision is not supported by long-term fitness data from wild neotropical monkeys.
    Fedigan LM; Melin AD; Addicott JF; Kawamura S
    PLoS One; 2014; 9(1):e84872. PubMed ID: 24404195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Howler monkey foraging ecology suggests convergent evolution of routine trichromacy as an adaptation for folivory.
    Melin AD; Khetpal V; Matsushita Y; Zhou K; Campos FA; Welker B; Kawamura S
    Ecol Evol; 2017 Mar; 7(5):1421-1434. PubMed ID: 28261454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental evidence that primate trichromacy is well suited for detecting primate social colour signals.
    Hiramatsu C; Melin AD; Allen WL; Dubuc C; Higham JP
    Proc Biol Sci; 2017 Jun; 284(1856):. PubMed ID: 28615496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Social Perception of Facial Color Appearance for Human Trichromatic Versus Dichromatic Color Vision.
    Thorstenson CA; Pazda AD; Elliot AJ
    Pers Soc Psychol Bull; 2020 Jan; 46(1):51-63. PubMed ID: 30982423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of fruit by the Cerrado's marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities.
    Perini ES; Pessoa VF; Pessoa DM
    J Exp Zool A Ecol Genet Physiol; 2009 Apr; 311(4):289-302. PubMed ID: 19296489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food colour.
    Caine NG; Mundy NI
    Proc Biol Sci; 2000 Mar; 267(1442):439-44. PubMed ID: 10737399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruptive coloration and binocular disparity: breaking camouflage.
    Adams WJ; Graf EW; Anderson M
    Proc Biol Sci; 2019 Feb; 286(1896):20182045. PubMed ID: 30963917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Color vision sensitivity in normally dichromatic species and humans.
    van Arsdel RE; Loop MS
    Vis Neurosci; 2004; 21(5):685-92. PubMed ID: 15688546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Food search through the eyes of a monkey: a functional substitution approach for assessing the ecology of primate color vision.
    Melin AD; Kline DW; Hickey CM; Fedigan LM
    Vision Res; 2013 Jun; 86():87-96. PubMed ID: 23643907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the Decrease in Luminance Noise Range on Color Discrimination of Dichromats and Trichromats.
    de Loureiro TMG; Brodeur K; Schade G; Brito FAC; Salomao RC; Miquilini L; Bonci DMO; Baran LCP; Hauzman E; Goulart PRK; Cortes MIT; Ventura DF; Fitzgerald MEC; Souza GS
    Front Behav Neurosci; 2018; 12():292. PubMed ID: 30532699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Color preference in red-green dichromats.
    Álvaro L; Moreira H; Lillo J; Franklin A
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9316-21. PubMed ID: 26170287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing colour for camouflage and visibility using deep learning: the effects of the environment and the observer's visual system.
    Fennell JG; Talas L; Baddeley RJ; Cuthill IC; Scott-Samuel NE
    J R Soc Interface; 2019 May; 16(154):20190183. PubMed ID: 31138092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the lateral geniculate nucleus in dichromatic and trichromatic marmosets.
    FitzGibbon T; Eriköz B; Grünert U; Martin PR
    J Comp Neurol; 2015 Sep; 523(13):1948-66. PubMed ID: 25753496
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of Fruit and the Selection of Primate Visual Pigments for Color Vision.
    Osorio D; Smith AC; Vorobyev M; Buchanan-Smith HM
    Am Nat; 2004 Dec; 164(6):696-708. PubMed ID: 29641923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What do color blind children really see? Guidelines for clinical prescreening based on recent findings.
    Breton ME; Nelson LB
    Surv Ophthalmol; 1983; 27(5):306-12. PubMed ID: 6602390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Camouflage and Clutch Survival in Plovers and Terns.
    Stoddard MC; Kupán K; Eyster HN; Rojas-Abreu W; Cruz-López M; Serrano-Meneses MA; Küpper C
    Sci Rep; 2016 Sep; 6():32059. PubMed ID: 27616020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.