These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29622920)

  • 41. Incorporating ecology and social system into formal hypotheses to guide field studies of color vision in primates.
    Bunce JA
    Am J Primatol; 2015 May; 77(5):516-26. PubMed ID: 25690845
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of polymorphic colour vision for fruit detection in the spider monkey Ateles geoffroyi, and its implications for the maintenance of polymorphic colour vision in platyrrhine monkeys.
    Riba-Hernández P; Stoner KE; Osorio D
    J Exp Biol; 2004 Jun; 207(Pt 14):2465-70. PubMed ID: 15184518
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Classical tritanopia.
    Alpern M; Kitahara K; Krantz DH
    J Physiol; 1983 Feb; 335():655-81. PubMed ID: 6603508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Background complexity can mitigate poor camouflage.
    Rowe ZW; Austin DJD; Chippington N; Flynn W; Starkey F; Wightman EJ; Scott-Samuel NE; Cuthill IC
    Proc Biol Sci; 2021 Nov; 288(1963):20212029. PubMed ID: 34814749
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robust colour constancy in red-green dichromats.
    Álvaro L; Linhares JMM; Moreira H; Lillo J; Nascimento SMC
    PLoS One; 2017; 12(6):e0180310. PubMed ID: 28662218
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trichromatic and dichromatic relative sensitivity to green light in a mild hypoxic environment.
    Hovis JK; Milburn NJ; Nesthus TE
    Aviat Space Environ Med; 2013 Nov; 84(11):1125-30. PubMed ID: 24279224
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimal background matching camouflage.
    Michalis C; Scott-Samuel NE; Gibson DP; Cuthill IC
    Proc Biol Sci; 2017 Jul; 284(1858):. PubMed ID: 28701559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus).
    Yeh T; Lee BB; Kremers J; Cowing JA; Hunt DM; Martin PR; Troy JB
    J Neurosci; 1995 Dec; 15(12):7892-904. PubMed ID: 8613728
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diversity of color vision: not all Australian marsupials are trichromatic.
    Ebeling W; Natoli RC; Hemmi JM
    PLoS One; 2010 Dec; 5(12):e14231. PubMed ID: 21151905
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fruits, foliage and the evolution of primate colour vision.
    Regan BC; Julliot C; Simmen B; Viénot F; Charles-Dominique P; Mollon JD
    Philos Trans R Soc Lond B Biol Sci; 2001 Mar; 356(1407):229-83. PubMed ID: 11316480
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Color constancy for daylight illumination changes in anomalous trichromats and dichromats.
    Aston S; Jordan G; Hurlbert A
    J Opt Soc Am A Opt Image Sci Vis; 2023 Mar; 40(3):A230-A240. PubMed ID: 37133049
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Demonstration of a genotype-phenotype correlation in the polymorphic color vision of a non-callitrichine New World monkey, capuchin (Cebus apella).
    Saito A; Kawamura S; Mikami A; Ueno Y; Hiramatsu C; Koida K; Fujita K; Kuroshima H; Hasegawa T
    Am J Primatol; 2005 Dec; 67(4):471-85. PubMed ID: 16342070
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visual responses of ganglion cells of a New-World primate, the capuchin monkey, Cebus apella.
    Lee BB; Silveira LC; Yamada ES; Hunt DM; Kremers J; Martin PR; Troy JB; da Silva-Filho M
    J Physiol; 2000 Nov; 528(Pt 3):573-90. PubMed ID: 11432364
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative use of color vision for frugivory by sympatric species of platyrrhines.
    Stoner KE; Riba-Hernández P; Lucas PW
    Am J Primatol; 2005 Dec; 67(4):399-409. PubMed ID: 16342076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantifying camouflage: how to predict detectability from appearance.
    Troscianko J; Skelhorn J; Stevens M
    BMC Evol Biol; 2017 Jan; 17(1):7. PubMed ID: 28056761
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Importance of achromatic contrast in short-range fruit foraging of primates.
    Hiramatsu C; Melin AD; Aureli F; Schaffner CM; Vorobyev M; Matsumoto Y; Kawamura S
    PLoS One; 2008 Oct; 3(10):e3356. PubMed ID: 18836576
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Background complexity and the detectability of camouflaged targets by birds and humans.
    Xiao F; Cuthill IC
    Proc Biol Sci; 2016 Sep; 283(1838):. PubMed ID: 27629039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Did trichromatic color vision and red hair color coevolve in primates?
    Kamilar JM; Heesy CP; Bradley BJ
    Am J Primatol; 2013 Jul; 75(7):740-51. PubMed ID: 23192604
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Colour thresholds in dichromats and normals.
    Loop MS; Shows JF; Mangel SC; Kuyk TK
    Vision Res; 2003 Apr; 43(9):983-92. PubMed ID: 12676242
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Parallel pathways in the retina of Old and New World primates.
    Lee BB; Silveira LC; Yamada E; Kremers J
    Rev Bras Biol; 1996 Dec; 56 Su 1 Pt 2():323-38. PubMed ID: 9394511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.