These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29623132)

  • 1. Liquid-assisted grinding and ion pairing regulates percentage conversion and diastereoselectivity of the Wittig reaction under mechanochemical conditions.
    Denlinger KL; Ortiz-Trankina L; Carr P; Benson K; Waddell DC; Mack J
    Beilstein J Org Chem; 2018; 14():688-696. PubMed ID: 29623132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanochemical Ring-Opening Polymerization of Lactide: Liquid-Assisted Grinding for the Green Synthesis of Poly(lactic acid) with High Molecular Weight.
    Ohn N; Shin J; Kim SS; Kim JG
    ChemSusChem; 2017 Sep; 10(18):3529-3533. PubMed ID: 28613397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(ethylene glycol)s as grinding additives in the mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins.
    Mascitti A; Lupacchini M; Guerra R; Taydakov I; Tonucci L; d'Alessandro N; Lamaty F; Martinez J; Colacino E
    Beilstein J Org Chem; 2017; 13():19-25. PubMed ID: 28179944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliable Mechanochemistry: Protocols for Reproducible Outcomes of Neat and Liquid Assisted Ball-mill Grinding Experiments.
    Belenguer AM; Lampronti GI; Sanders JKM
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cocrystal Formation through Mechanochemistry: from Neat and Liquid-Assisted Grinding to Polymer-Assisted Grinding.
    Hasa D; Rauber GS; Voinovich D; Jones W
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7371-5. PubMed ID: 25939405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanochemical borylation of aryldiazonium salts; merging light and ball milling.
    Hernández JG
    Beilstein J Org Chem; 2017; 13():1463-1469. PubMed ID: 28845189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanochemical synthesis of poly(trimethylene carbonate)s: an example of rate acceleration.
    Park S; Kim JG
    Beilstein J Org Chem; 2019; 15():963-970. PubMed ID: 31164933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Energy Ball Milling Enables an Ultra-Fast Wittig Olefination Under Ambient and Solvent-free Conditions.
    Templ J; Schnürch M
    Angew Chem Int Ed Engl; 2024 Dec; 63(49):e202411536. PubMed ID: 39207262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis without solvent: consequences for mechanochemical reactivity.
    Wenger LE; Hanusa TP
    Chem Commun (Camb); 2023 Nov; 59(96):14210-14222. PubMed ID: 37953718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy.
    Gracin D; Štrukil V; Friščić T; Halasz I; Užarević K
    Angew Chem Int Ed Engl; 2014 Jun; 53(24):6193-7. PubMed ID: 24764165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal-organic frameworks.
    Friščić T
    Chem Soc Rev; 2012 May; 41(9):3493-510. PubMed ID: 22371100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switching Chemoselectivity: Using Mechanochemistry to Alter Reaction Kinetics.
    Howard JL; Brand MC; Browne DL
    Angew Chem Int Ed Engl; 2018 Dec; 57(49):16104-16108. PubMed ID: 30335216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding Ball Milling Mechanochemical Processes with DFT Calculations and Microkinetic Modeling.
    Pladevall BS; de Aguirre A; Maseras F
    ChemSusChem; 2021 Jul; 14(13):2763-2768. PubMed ID: 33843150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanochemical enzymatic resolution of
    Pérez-Venegas M; Reyes-Rangel G; Neri A; Escalante J; Juaristi E
    Beilstein J Org Chem; 2017; 13():1728-1734. PubMed ID: 28904616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The "
    Gonnet L; Borchers TH; Lennox CB; Vainauskas J; Teoh Y; Titi HM; Barrett CJ; Koenig SG; Nagapudi K; Friščić T
    Faraday Discuss; 2023 Jan; 241(0):128-149. PubMed ID: 36239309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking mechanochemistry with the green chemistry principles: Review article.
    Arfelis S; Martín-Perales AI; Nguyen R; Pérez A; Cherubin I; Len C; Malpartida I; Bala A; Fullana-I-Palmer P
    Heliyon; 2024 Jul; 10(14):e34655. PubMed ID: 39148985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering Product Selectivity by Mechanochemistry.
    Hernández JG; Bolm C
    J Org Chem; 2017 Apr; 82(8):4007-4019. PubMed ID: 28080050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanochemistry for Synthesis.
    Friščić T; Mottillo C; Titi HM
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1018-1029. PubMed ID: 31294885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanochemical Scholl reaction as a versatile synthesis tool for the solvent-free generation of microporous polymers.
    Krusenbaum A; Grätz S; Bimmermann S; Hutsch S; Borchardt L
    RSC Adv; 2020 Jul; 10(43):25509-25516. PubMed ID: 35518582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Milling Medium-Free Suzuki Coupling by Direct Mechanocatalysis: From Mixer Mills to Resonant Acoustic Mixers.
    Wohlgemuth M; Schmidt S; Mayer M; Pickhardt W; Grätz S; Borchardt L
    Chemistry; 2023 Nov; 29(65):e202301714. PubMed ID: 37503657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.