These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 29623231)

  • 1. African Orphan Crops under Abiotic Stresses: Challenges and Opportunities.
    Tadele Z
    Scientifica (Cairo); 2018; 2018():1451894. PubMed ID: 29623231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Healthy and Resilient Cereals and Pseudo-Cereals for Marginal Agriculture: Molecular Advances for Improving Nutrient Bioavailability.
    Rodríguez JP; Rahman H; Thushar S; Singh RK
    Front Genet; 2020; 11():49. PubMed ID: 32174958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orphan Crops: A Best Fit for Dietary Enrichment and Diversification in Highly Deteriorated Marginal Environments.
    Talabi AO; Vikram P; Thushar S; Rahman H; Ahmadzai H; Nhamo N; Shahid M; Singh RK
    Front Plant Sci; 2022; 13():839704. PubMed ID: 35283935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking the potential of orphan legumes.
    Cullis C; Kunert KJ
    J Exp Bot; 2017 Apr; 68(8):1895-1903. PubMed ID: 28003311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets.
    Numan M; Serba DD; Ligaba-Osena A
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Exploitation of Orphan Legumes for Food, Income, and Nutrition Security in Sub-Saharan Africa.
    Popoola JO; Aworunse OS; Ojuederie OB; Adewale BD; Ajani OC; Oyatomi OA; Eruemulor DI; Adegboyega TT; Obembe OO
    Front Plant Sci; 2022; 13():782140. PubMed ID: 35665143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speed breeding orphan crops.
    Chiurugwi T; Kemp S; Powell W; Hickey LT
    Theor Appl Genet; 2019 Mar; 132(3):607-616. PubMed ID: 30341490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects of orphan crops in climate change.
    Mabhaudhi T; Chimonyo VGP; Hlahla S; Massawe F; Mayes S; Nhamo L; Modi AT
    Planta; 2019 Sep; 250(3):695-708. PubMed ID: 30868238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orphan crops: their importance and the urgency of improvement.
    Tadele Z
    Planta; 2019 Sep; 250(3):677-694. PubMed ID: 31190115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. African Orphan Crops Consortium (AOCC): status of developing genomic resources for African orphan crops.
    Hendre PS; Muthemba S; Kariba R; Muchugi A; Fu Y; Chang Y; Song B; Liu H; Liu M; Liao X; Sahu SK; Wang S; Li L; Lu H; Peng S; Cheng S; Xu X; Yang H; Wang J; Liu X; Simons A; Shapiro HY; Mumm RH; Van Deynze A; Jamnadass R
    Planta; 2019 Sep; 250(3):989-1003. PubMed ID: 31073657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges.
    Mekonnen TW; Gerrano AS; Mbuma NW; Labuschagne MT
    Plants (Basel); 2022 Jun; 11(12):. PubMed ID: 35736733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nexus on climate change: agriculture and possible solution to cope future climate change stresses.
    Shahzad A; Ullah S; Dar AA; Sardar MF; Mehmood T; Tufail MA; Shakoor A; Haris M
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14211-14232. PubMed ID: 33515149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marginal Lands to Grow Novel Bio-Based Crops: A Plant Breeding Perspective.
    Pancaldi F; Trindade LM
    Front Plant Sci; 2020; 11():227. PubMed ID: 32194604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops.
    Sánchez-Bermúdez M; Del Pozo JC; Pernas M
    Front Plant Sci; 2022; 13():918537. PubMed ID: 35845642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview.
    Trono D; Pecchioni N
    Plants (Basel); 2022 Dec; 11(23):. PubMed ID: 36501397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes.
    Dwivedi SL; Scheben A; Edwards D; Spillane C; Ortiz R
    Front Plant Sci; 2017; 8():1461. PubMed ID: 28900432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creating Climate-Resilient Crops by Increasing Drought, Heat, and Salt Tolerance.
    Sugumar T; Shen G; Smith J; Zhang H
    Plants (Basel); 2024 Apr; 13(9):. PubMed ID: 38732452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses.
    Mammadov J; Buyyarapu R; Guttikonda SK; Parliament K; Abdurakhmonov IY; Kumpatla SP
    Front Plant Sci; 2018; 9():886. PubMed ID: 30002665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance.
    Maharajan T; Krishna TPA; Rakkammal K; Ceasar SA; Ramesh M
    Planta; 2022 Nov; 256(6):106. PubMed ID: 36326904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.