These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29623412)

  • 1. Staying hot to fight the heat-high body temperatures accompany a diurnal endothermic lifestyle in the tropics.
    Levesque DL; Tuen AA; Lovegrove BG
    J Comp Physiol B; 2018 Jul; 188(4):707-716. PubMed ID: 29623412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small Tropical Mammals Can Take the Heat: High Upper Limits of Thermoneutrality in a Bornean Treeshrew.
    Thonis A; Ceballos RM; Tuen AA; Lovegrove BG; Levesque DL
    Physiol Biochem Zool; 2020; 93(3):199-209. PubMed ID: 32196407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution.
    Humphries MM; Careau V
    Integr Comp Biol; 2011 Sep; 51(3):419-31. PubMed ID: 21700569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail.
    Smith EK; O'Neill J; Gerson AR; Wolf BO
    J Exp Biol; 2015 Nov; 218(Pt 22):3636-46. PubMed ID: 26582934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissimilar use of an external heat source for thermoregulation by shrews from different geographic regions.
    Oliveira FG; Tapisso JT; Afonso BC; Pereira JV; Neves T; von Merten S; Mathias MDL; Rychlik L
    J Therm Biol; 2022 Feb; 104():103193. PubMed ID: 35180970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The joint effect of micro- and macro-climate on the thermoregulation and heat dissipation of two African mole-rat (Bathyergidae) sub-species, Cryptomys hottentotus mahali and C. h. pretoriae.
    Wallace KME; van Jaarsveld B; Bennett NC; Hart DW
    J Therm Biol; 2021 Jul; 99():103025. PubMed ID: 34420600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.
    Gerson AR; Smith EK; Smit B; McKechnie AE; Wolf BO
    Physiol Biochem Zool; 2014; 87(6):782-95. PubMed ID: 25461643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avian thermoregulation in the heat: evaporative cooling capacity of arid-zone Caprimulgiformes from two continents.
    Talbot WA; McWhorter TJ; Gerson AR; McKechnie AE; Wolf BO
    J Exp Biol; 2017 Oct; 220(Pt 19):3488-3498. PubMed ID: 28760832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds.
    Smith EK; O'Neill JJ; Gerson AR; McKechnie AE; Wolf BO
    J Exp Biol; 2017 Sep; 220(Pt 18):3290-3300. PubMed ID: 28684465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avian thermoregulation in the heat: is evaporative cooling more economical in nocturnal birds?
    O'Connor RS; Smit B; Talbot WA; Gerson AR; Brigham RM; Wolf BO; McKechnie AE
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 29950448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of thermal stress during rest and exercise in the paediatric population.
    Falk B
    Sports Med; 1998 Apr; 25(4):221-40. PubMed ID: 9587181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Winter reduction in body mass in a very small, nonhibernating mammal: consequences for heat loss and metabolic rates.
    Taylor JR; Rychlik L; Churchfield S
    Physiol Biochem Zool; 2013; 86(1):9-18. PubMed ID: 23303317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines.
    Whitfield MC; Smit B; McKechnie AE; Wolf BO
    J Exp Biol; 2015 Jun; 218(Pt 11):1705-14. PubMed ID: 26041032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoregulation in endothermic insects.
    Heinrich B
    Science; 1974 Aug; 185(4153):747-56. PubMed ID: 4602075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal niche switching and reduced nest attendance in response to heat dissipation limits in lactating common voles (Microtus arvalis).
    van der Vinne V; Simons MJ; Reimert I; Gerkema MP
    Physiol Behav; 2014 Apr; 128():295-302. PubMed ID: 24518859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterothermy in two mole-rat species subjected to interacting thermoregulatory challenges.
    Boyles JG; Verburgt L; McKechnie AE; Bennett NC
    J Exp Zool A Ecol Genet Physiol; 2012 Feb; 317(2):73-82. PubMed ID: 22105982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased homeothermy during reproduction in a basal placental mammal.
    Levesque DL; Lovegrove BG
    J Exp Biol; 2014 May; 217(Pt 9):1535-42. PubMed ID: 24501138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avian thermoregulation in the heat: metabolism, evaporative cooling and gular flutter in two small owls.
    Talbot WA; Gerson AR; Smith EK; McKechnie AE; Wolf BO
    J Exp Biol; 2018 Jun; 221(Pt 12):. PubMed ID: 29925545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of avian heat tolerance: The role of atmospheric humidity.
    Freeman MT; Coulson B; Short JC; Ngcamphalala CA; Makola MO; McKechnie AE
    Ecology; 2024 May; 105(5):e4279. PubMed ID: 38501232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambient Temperature as a Strong
    Hart DW; van Jaarsveld B; Lasch KG; Grenfell KL; Oosthuizen MK; Bennett NC
    J Biol Rhythms; 2021 Oct; 36(5):461-469. PubMed ID: 34343446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.