BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29624054)

  • 1. Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds.
    Lindley SA; Cooper JK; Rojas-Andrade MD; Fung V; Leahy CJ; Chen S; Zhang JZ
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12992-13001. PubMed ID: 29624054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres.
    Schwartzberg AM; Olson TY; Talley CE; Zhang JZ
    J Phys Chem B; 2006 Oct; 110(40):19935-44. PubMed ID: 17020380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow Gold Nanosphere Templated Synthesis of PEGylated Hollow Gold Nanostars and Use for SERS Detection of Amyloid Beta in Solution.
    Allen AC; Efrem M; Mahalingam U; Guarino-Hotz M; Foley AR; Raskatov JA; Song C; Lindley SA; Li J; Chen B; Zhang JZ
    J Phys Chem B; 2021 Nov; 125(44):12344-12352. PubMed ID: 34726922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural control and biomedical applications of plasmonic hollow gold nanospheres: A mini review.
    Guarino-Hotz M; Zhang JZ
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Jul; 13(4):e1694. PubMed ID: 33501780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled plasmon resonance properties of hollow gold nanosphere aggregates.
    Chandra M; Dowgiallo AM; Knappenberger KL
    J Am Chem Soc; 2010 Nov; 132(44):15782-9. PubMed ID: 20961113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes.
    Liang HP; Wan LJ; Bai CL; Jiang L
    J Phys Chem B; 2005 Apr; 109(16):7795-800. PubMed ID: 16851906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer.
    Xie HN; Larmour IA; Chen YC; Wark AW; Tileli V; McComb DW; Faulds K; Graham D
    Nanoscale; 2013 Jan; 5(2):765-71. PubMed ID: 23233034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile preparation of gold nanocages and hollow gold nanospheres via solvent thermal treatment and their surface plasmon resonance and photothermal properties.
    Wang H; Han J; Lu W; Zhang J; Li J; Jiang L
    J Colloid Interface Sci; 2015 Feb; 440():236-44. PubMed ID: 25460711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Hollow Gold Nanoparticles - Impact of Variables on Process Optimization.
    Damani M; Desai N; Singh BP; Ningthoujam RS; Momin M; Khan T
    J Pharm Sci; 2022 Oct; 111(10):2907-2916. PubMed ID: 35940241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.
    Li CH; Jamison AC; Rittikulsittichai S; Lee TC; Lee TR
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19943-50. PubMed ID: 25321928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of confined fluids on nanoparticle-to-surroundings energy transfer.
    Dowgiallo AM; Knappenberger KL
    J Am Chem Soc; 2012 Nov; 134(47):19393-400. PubMed ID: 23110583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using spectroscopic ellipsometry to characterize and apply the optical constants of hollow gold nanoparticles.
    Wan D; Chen HL; Lin YS; Chuang SY; Shieh J; Chen SH
    ACS Nano; 2009 Apr; 3(4):960-70. PubMed ID: 19290613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast electron-phonon coupling in hollow gold nanospheres.
    Dowgiallo AM; Knappenberger KL
    Phys Chem Chem Phys; 2011 Dec; 13(48):21585-92. PubMed ID: 22052194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region.
    Lien J; Peck KA; Su M; Guo T
    J Colloid Interface Sci; 2016 Oct; 479():173-181. PubMed ID: 27388131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-c-Met antibody bioconjugated with hollow gold nanospheres as a novel nanomaterial for targeted radiation ablation of human cervical cancer cell.
    Liang Y; Liu J; Liu T; Yang X
    Oncol Lett; 2017 Aug; 14(2):2254-2260. PubMed ID: 28789447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic relaxation dynamics in isolated and aggregated hollow gold nanospheres.
    Knappenberger KL; Schwartzberg AM; Dowgiallo AM; Lowman CA
    J Am Chem Soc; 2009 Oct; 131(39):13892-3. PubMed ID: 19788321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalisation of hollow gold nanospheres for use as stable, red-shifted SERS nanotags.
    Moreton S; Faulds K; Shand NC; Bedics MA; Detty MR; Graham D
    Nanoscale; 2015 Apr; 7(14):6075-82. PubMed ID: 25766131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the NIR Fluence Threshold for Nanobubble Generation by Controlled Synthesis of 10 - 40 nm Hollow Gold Nanoshells.
    Ogunyankin MO; Shin JE; Lapotko DO; Ferry VE; Zasadzinski JA
    Adv Funct Mater; 2018 Mar; 28(10):. PubMed ID: 31467502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced light-harvesting by plasmonic hollow gold nanospheres for photovoltaic performance.
    Ding H; Lv J; Wu H; Chai G; Liu A
    R Soc Open Sci; 2018 Jan; 5(1):171350. PubMed ID: 29410838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.