These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biofumigation with Brassica juncea, Raphanus sativus and Eruca sativa for the management of field populations of the potato cyst nematode Globodera pallida. Ngala BM; Haydock PP; Woods S; Back MA Pest Manag Sci; 2015 May; 71(5):759-69. PubMed ID: 24965697 [TBL] [Abstract][Full Text] [Related]
3. Formation and degradation kinetics of the biofumigant benzyl isothiocyanate in soil. Gimsing AL; Poulsen JL; Pedersen HL; Hansen HC Environ Sci Technol; 2007 Jun; 41(12):4271-6. PubMed ID: 17626424 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous quantification of sinigrin, sinalbin, and anionic glucosinolate hydrolysis products in Brassica juncea and Sinapis alba seed extracts using ion chromatography. Popova IE; Morra MJ J Agric Food Chem; 2014 Nov; 62(44):10687-93. PubMed ID: 25314611 [TBL] [Abstract][Full Text] [Related]
5. New Insights on the Role of Allyl Isothiocyanate in Controlling the Root Knot Nematode Dahlin P; Hallmann J Plants (Basel); 2020 May; 9(5):. PubMed ID: 32397380 [TBL] [Abstract][Full Text] [Related]
6. Turning glucosinolate into allelopathic fate: investigating allyl isothiocyanate variability and nitrile formation in eco-friendly Brassica juncea from South Korea. Ko DY; Seo SM; Lee YH; Gil CS; Lee H; Ku KM Sci Rep; 2024 Jul; 14(1):15423. PubMed ID: 38965285 [TBL] [Abstract][Full Text] [Related]
7. Glucosinolate profile variation of growth stages of wild radish (Raphanus raphanistrum). Malik MS; Riley MB; Norsworthy JK; Bridges W J Agric Food Chem; 2010 Mar; 58(6):3309-15. PubMed ID: 20163113 [TBL] [Abstract][Full Text] [Related]
8. Development of an efficient glucosinolate extraction method. Doheny-Adams T; Redeker K; Kittipol V; Bancroft I; Hartley SE Plant Methods; 2017; 13():17. PubMed ID: 28344636 [TBL] [Abstract][Full Text] [Related]
9. Control of Chhetri P; Dandurand LM; Popova I Plant Dis; 2023 May; 107(5):1491-1498. PubMed ID: 36320132 [TBL] [Abstract][Full Text] [Related]
10. Uncovering the biofumigant capacity of allyl isothiocyanate from several Brassicaceae crops against Fusarium pathogens in maize. Vandicke J; De Visschere K; Deconinck S; Leenknecht D; Vermeir P; Audenaert K; Haesaert G J Sci Food Agric; 2020 Dec; 100(15):5476-5486. PubMed ID: 32564371 [TBL] [Abstract][Full Text] [Related]
11. The effect of processing on the glucosinolate profile in mustard seed. Cools K; Terry LA Food Chem; 2018 Jun; 252():343-348. PubMed ID: 29478552 [TBL] [Abstract][Full Text] [Related]
12. Interactive effects of sulfur and nitrogen supply on the concentration of sinigrin and allyl isothiocyanate in Indian mustard (Brassica juncea L.). Gerendás J; Podestát J; Stahl T; Kübler K; Brückner H; Mersch-Sundermann V; Mühling KH J Agric Food Chem; 2009 May; 57(9):3837-44. PubMed ID: 19309148 [TBL] [Abstract][Full Text] [Related]
13. Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. Papi A; Orlandi M; Bartolini G; Barillari J; Iori R; Paolini M; Ferroni F; Grazia Fumo M; Pedulli GF; Valgimigli L J Agric Food Chem; 2008 Feb; 56(3):875-83. PubMed ID: 18189352 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous Analysis of Glucosinolates and Isothiocyanates by Reversed-Phase Ultra-High-Performance Liquid Chromatography-Electron Spray Ionization-Tandem Mass Spectrometry. Andini S; Araya-Cloutier C; Sanders M; Vincken JP J Agric Food Chem; 2020 Mar; 68(10):3121-3131. PubMed ID: 32053364 [TBL] [Abstract][Full Text] [Related]
15. Nutrient Supply and Simulated Herbivory Differentially Alter the Metabolite Pools and the Efficacy of the Glucosinolate-Based Defense System in Brassica Species. Almuziny M; Decker C; Wang D; Gerard P; Tharayil N J Chem Ecol; 2017 Feb; 43(2):129-142. PubMed ID: 28050732 [TBL] [Abstract][Full Text] [Related]
16. Concentration- and time-dependent effects of isothiocyanates produced from Brassicaceae shoot tissues on the pea root rot pathogen Aphanomyces euteiches. Hossain S; Bergkvist G; Berglund K; Glinwood R; Kabouw P; Mårtensson A; Persson P J Agric Food Chem; 2014 May; 62(20):4584-91. PubMed ID: 24824814 [TBL] [Abstract][Full Text] [Related]
17. Myrosinase Compatible Simultaneous Determination of Glucosinolates and Allyl Isothiocyanate by Capillary Electrophoresis Micellar Electrokinetic Chromatography (CE-MEKC). Gonda S; Kiss-Szikszai A; Szűcs Z; Nguyen NM; Vasas G Phytochem Anal; 2016 May; 27(3-4):191-8. PubMed ID: 27313156 [TBL] [Abstract][Full Text] [Related]
18. 4-Methylsulfanyl-3-butenyl isothiocyanate derived from glucoraphasatin is a potent inducer of rat hepatic phase II enzymes and a potential chemopreventive agent. Abdull Razis AF; De Nicola GR; Pagnotta E; Iori R; Ioannides C Arch Toxicol; 2012 Feb; 86(2):183-94. PubMed ID: 21960141 [TBL] [Abstract][Full Text] [Related]
19. Phaedon cochleariae (F.) performance on different crucifer varieties with different glucosinolate profiles. Uddin MM; Ulrichs C; Mewis I Commun Agric Appl Biol Sci; 2008; 73(3):563-72. PubMed ID: 19226796 [TBL] [Abstract][Full Text] [Related]
20. The mechanism of deterioration of the glucosinolate-myrosynase system in radish roots during cold storage after harvest. Lee JG; Lim S; Kim J; Lee EJ Food Chem; 2017 Oct; 233():60-68. PubMed ID: 28530612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]