These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29624107)

  • 1. RNA capping by mitochondrial and multi-subunit RNA polymerases.
    Julius C; Riaz-Bradley A; Yuzenkova Y
    Transcription; 2018; 9(5):292-297. PubMed ID: 29624107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncanonical RNA-capping: Discovery, mechanism, and physiological role debate.
    Julius C; Yuzenkova Y
    Wiley Interdiscip Rev RNA; 2019 Mar; 10(2):e1512. PubMed ID: 30353673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA.
    Bird JG; Zhang Y; Tian Y; Panova N; Barvík I; Greene L; Liu M; Buckley B; Krásný L; Lee JK; Kaplan CD; Ebright RH; Nickels BE
    Nature; 2016 Jul; 535(7612):444-7. PubMed ID: 27383794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial RNA polymerase caps RNA with various cofactors and cell wall precursors.
    Julius C; Yuzenkova Y
    Nucleic Acids Res; 2017 Aug; 45(14):8282-8290. PubMed ID: 28531287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient 5' capping of mitochondrial RNA with NAD
    Bird JG; Basu U; Kuster D; Ramachandran A; Grudzien-Nogalska E; Towheed A; Wallace DC; Kiledjian M; Temiakov D; Patel SS; Ebright RH; Nickels BE
    Elife; 2018 Dec; 7():. PubMed ID: 30526856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CapZyme-Seq Comprehensively Defines Promoter-Sequence Determinants for RNA 5' Capping with NAD.
    Vvedenskaya IO; Bird JG; Zhang Y; Zhang Y; Jiao X; Barvík I; Krásný L; Kiledjian M; Taylor DM; Ebright RH; Nickels BE
    Mol Cell; 2018 May; 70(3):553-564.e9. PubMed ID: 29681497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro promoter recognition by the catalytic subunit of plant phage-type RNA polymerases.
    Bohne AV; Teubner M; Liere K; Weihe A; Börner T
    Plant Mol Biol; 2016 Oct; 92(3):357-69. PubMed ID: 27497992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription.
    Huang F
    Nucleic Acids Res; 2003 Feb; 31(3):e8. PubMed ID: 12560511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A gel electrophoresis-based assay for measuring enzymatic RNA decapping activity.
    Singh Y; Bird JG
    Methods Enzymol; 2022; 675():323-350. PubMed ID: 36220275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and in vitro characterization of UDP-GlcNAc-RNA cap-modifying and decapping enzymes.
    Weber F; Motzkus NA; Brandl L; Möhler M; Alempijevic A; Jäschke A
    Nucleic Acids Res; 2024 Jun; 52(10):5438-5450. PubMed ID: 38716860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DXO/Rai1 enzymes remove 5'-end FAD and dephospho-CoA caps on RNAs.
    Doamekpor SK; Grudzien-Nogalska E; Mlynarska-Cieslak A; Kowalska J; Kiledjian M; Tong L
    Nucleic Acids Res; 2020 Jun; 48(11):6136-6148. PubMed ID: 32374864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Old and New Testaments of gene regulation. Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD.
    Burton ZF
    Transcription; 2014; 5(3):e28674. PubMed ID: 25764332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Function of RNA Polymerases and the Transcription Machineries.
    Griesenbeck J; Tschochner H; Grohmann D
    Subcell Biochem; 2017; 83():225-270. PubMed ID: 28271479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Np
    Luciano DJ; Belasco JG
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3560-3567. PubMed ID: 32019889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-Catalyzed CoA, NAD, and FAD synthesis from phosphopantetheine, NMN, and FMN.
    Huang F; Bugg CW; Yarus M
    Biochemistry; 2000 Dec; 39(50):15548-55. PubMed ID: 11112541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs.
    Sharma S; Grudzien-Nogalska E; Hamilton K; Jiao X; Yang J; Tong L; Kiledjian M
    Nucleic Acids Res; 2020 Jul; 48(12):6788-6798. PubMed ID: 32432673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis phage-type RNA polymerases: accurate in vitro transcription of organellar genes.
    Kühn K; Bohne AV; Liere K; Weihe A; Börner T
    Plant Cell; 2007 Mar; 19(3):959-71. PubMed ID: 17400896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription regulation at the core: similarities among bacterial, archaeal, and eukaryotic RNA polymerases.
    Decker KB; Hinton DM
    Annu Rev Microbiol; 2013; 67():113-39. PubMed ID: 23768203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary Origins of Two-Barrel RNA Polymerases and Site-Specific Transcription Initiation.
    Fouqueau T; Blombach F; Werner F
    Annu Rev Microbiol; 2017 Sep; 71():331-348. PubMed ID: 28657884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA Capping by Transcription Initiation with Non-canonical Initiating Nucleotides (NCINs): Determination of Relative Efficiencies of Transcription Initiation with NCINs and NTPs.
    Bird JG; Nickels BE; Ebright RH
    Bio Protoc; 2017 Jun; 7(12):. PubMed ID: 28840175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.