These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29624327)

  • 1. Characterization of Carbon Nanotube Based Infrared Photodetector Using Digital Microscopy.
    Chen L; Yu M; Xi N; Song B; Yang Y; Zhou Z; Sun Z; Cheng Y; Wu Y; Hou C; Dong L
    J Nanosci Nanotechnol; 2017 Jan; 17(1):482-87. PubMed ID: 29624327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-high Photoresponsivity in Suspended Metal-Semiconductor-Metal Mesoscopic Multilayer MoS
    Saenz GA; Karapetrov G; Curtis J; Kaul AB
    Sci Rep; 2018 Jan; 8(1):1276. PubMed ID: 29352140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films.
    Huang H; Wang F; Liu Y; Wang S; Peng LM
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12743-12749. PubMed ID: 28322049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significantly enhanced photoresponse of carbon nanotube films modified with cesium tungsten bronze nanoclusters in the visible to short-wave infrared range.
    Chen H; Zhu J; Cao Y; Wei J; Lv B; Hu Q; Sun JL
    RSC Adv; 2021 Dec; 11(63):39646-39656. PubMed ID: 35494114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene-Black Phosphorus Heterostructure.
    Liu Y; Shivananju BN; Wang Y; Zhang Y; Yu W; Xiao S; Sun T; Ma W; Mu H; Lin S; Zhang H; Lu Y; Qiu CW; Li S; Bao Q
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36137-36145. PubMed ID: 28948769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1.55-mum and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector.
    Lee MK; Chu CH; Wang YH; Sze SM
    Opt Lett; 2001 Feb; 26(3):160-2. PubMed ID: 18033536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector.
    Bai P; Li X; Yang N; Chu W; Bai X; Huang S; Zhang Y; Shen W; Fu Z; Shao D; Tan Z; Li H; Cao J; Li L; Linfield EH; Xie Y; Zhao Z
    Sci Adv; 2022 May; 8(21):eabn2031. PubMed ID: 35613269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser patterning of epitaxial graphene for Schottky junction photodetectors.
    Singh RS; Nalla V; Chen W; Wee AT; Ji W
    ACS Nano; 2011 Jul; 5(7):5969-75. PubMed ID: 21702443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Distance Measurement Based on Induced Nonlinear Photoresponse of High-Performance Organic Near-Infrared Photodetectors.
    Wang Y; Benduhn J; Baisinger L; Lungenschmied C; Leo K; Spoltore D
    ACS Appl Mater Interfaces; 2021 May; 13(19):23239-23246. PubMed ID: 33960768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared HOT Photodetectors: Status and Outlook.
    Rogalski A; Kopytko M; Hu W; Martyniuk P
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37688032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-sensitive and broadband germanium sulfide photodetectors with excellent high-temperature performance.
    Tan D; Zhang W; Wang X; Koirala S; Miyauchi Y; Matsuda K
    Nanoscale; 2017 Aug; 9(34):12425-12431. PubMed ID: 28809426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferromagnetic CoSe broadband photodetector at room temperature.
    Liang F; Wang C; Luo C; Xia Y; Wang Y; Xu M; Wang H; Wang T; Zhu Y; Wu P; Ye J; Mu G; Zhu H; Wu X
    Nanotechnology; 2020 Sep; 31(37):374002. PubMed ID: 32480385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging.
    Miao J; Song B; Xu Z; Cai L; Zhang S; Dong L; Wang C
    Small; 2018 Jan; 14(2):. PubMed ID: 29165882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focus-Induced Photoresponse: a novel way to measure distances with photodetectors.
    Pekkola O; Lungenschmied C; Fejes P; Handreck A; Hermes W; Irle S; Lennartz C; Schildknecht C; Schillen P; Schindler P; Send R; Valouch S; Thiel E; Bruder I
    Sci Rep; 2018 Jun; 8(1):9208. PubMed ID: 29907749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High photoresponse in hybrid graphene-carbon nanotube infrared detectors.
    Lu R; Christianson C; Weintrub B; Wu JZ
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11703-7. PubMed ID: 24164551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed carbon nanotube photodetector based on a planarized silicon waveguide.
    Zhao H; Yang L; Xiu H; Deng M; Wang Y; Zhang Q
    Appl Opt; 2024 Jun; 63(16):4435-4440. PubMed ID: 38856624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions.
    Huang W; Xing C; Wang Y; Li Z; Wu L; Ma D; Dai X; Xiang Y; Li J; Fan D; Zhang H
    Nanoscale; 2018 Feb; 10(5):2404-2412. PubMed ID: 29334393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus.
    Long M; Gao A; Wang P; Xia H; Ott C; Pan C; Fu Y; Liu E; Chen X; Lu W; Nilges T; Xu J; Wang X; Hu W; Miao F
    Sci Adv; 2017 Jun; 3(6):e1700589. PubMed ID: 28695200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband photodetectors based on graphene-Bi2Te3 heterostructure.
    Qiao H; Yuan J; Xu Z; Chen C; Lin S; Wang Y; Song J; Liu Y; Khan Q; Hoh HY; Pan CX; Li S; Bao Q
    ACS Nano; 2015 Feb; 9(2):1886-94. PubMed ID: 25598406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive Near-Infrared Photodetectors Based on a Graphene-MoTe
    Zhang K; Fang X; Wang Y; Wan Y; Song Q; Zhai W; Li Y; Ran G; Ye Y; Dai L
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5392-5398. PubMed ID: 28111947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.