These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29624368)

  • 1. Hybrid Surface and Bulk Resonant Acoustics for Concurrent Actuation and Sensing on a Single Microfluidic Device.
    Nguyen EP; Lee L; Rezk AR; Sabri YM; Bhargava SK; Yeo LY
    Anal Chem; 2018 Apr; 90(8):5335-5342. PubMed ID: 29624368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic Biosensors and Microfluidic Devices in the Decennium: Principles and Applications.
    Nair MP; Teo AJT; Li KHH
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic biosensors.
    Fogel R; Limson J; Seshia AA
    Essays Biochem; 2016 Jun; 60(1):101-10. PubMed ID: 27365040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating microfluidics and biosensing on a single flexible acoustic device using hybrid modes.
    Tao R; Reboud J; Torun H; McHale G; Dodd LE; Wu Q; Tao K; Yang X; Luo JT; Todryk S; Fu Y
    Lab Chip; 2020 Mar; 20(5):1002-1011. PubMed ID: 32026889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic wave based MEMS devices for biosensing applications.
    Voiculescu I; Nordin AN
    Biosens Bioelectron; 2012 Mar; 33(1):1-9. PubMed ID: 22310157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments.
    Fu YQ; Pang HF; Torun H; Tao R; McHale G; Reboud J; Tao K; Zhou J; Luo J; Gibson D; Luo J; Hu P
    Lab Chip; 2021 Jan; 21(2):254-271. PubMed ID: 33337457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavily-Doped Bulk Silicon Sidewall Electrodes Embedded between Free-Hanging Microfluidic Channels by Modified Surface Channel Technology.
    Zhao Y; Veltkamp HW; Schut TVP; Sanders RGP; Breazu B; Groenesteijn J; de Boer MJ; Wiegerink RJ; Lötters JC
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32486348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Platform of Acoustofluidics and Metamaterials with Decoupled Resonant Frequencies.
    Zahertar S; Torun H; Sun C; Markwell C; Dong Y; Yang X; Fu Y
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient coupling of acoustic modes in microfluidic channel devices.
    Bora M; Shusteff M
    Lab Chip; 2015 Aug; 15(15):3192-202. PubMed ID: 26118358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HYbriD Resonant Acoustics (HYDRA).
    Rezk AR; Tan JK; Yeo LY
    Adv Mater; 2016 Mar; 28(10):1970-5. PubMed ID: 26743122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate.
    Renaudin A; Chabot V; Grondin E; Aimez V; Charette PG
    Lab Chip; 2010 Jan; 10(1):111-5. PubMed ID: 20024058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant piezoelectricity on Si for hyperactive MEMS.
    Baek SH; Park J; Kim DM; Aksyuk VA; Das RR; Bu SD; Felker DA; Lettieri J; Vaithyanathan V; Bharadwaja SS; Bassiri-Gharb N; Chen YB; Sun HP; Folkman CM; Jang HW; Kreft DJ; Streiffer SK; Ramesh R; Pan XQ; Trolier-McKinstry S; Schlom DG; Rzchowski MS; Blick RH; Eom CB
    Science; 2011 Nov; 334(6058):958-61. PubMed ID: 22096193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices.
    Algamili AS; Khir MHM; Dennis JO; Ahmed AY; Alabsi SS; Ba Hashwan SS; Junaid MM
    Nanoscale Res Lett; 2021 Jan; 16(1):16. PubMed ID: 33496852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized Mechanical Actuation using pn Junctions.
    Kanygin M; Joy AP; Bahreyni B
    Sci Rep; 2019 Oct; 9(1):14885. PubMed ID: 31619696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.
    Zu H; Wu H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):486-505. PubMed ID: 26886982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray characteristics of an ultrasonic microdroplet generator with a continuously variable operating frequency.
    Shan L; Cui M; Meacham JM
    J Acoust Soc Am; 2021 Aug; 150(2):1300. PubMed ID: 34470276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Cell Transport with Piezoelectric Micro Diaphragm Pumps.
    Bußmann A; Thalhofer T; Hoffmann S; Daum L; Surendran N; Hayden O; Hubbuch J; Richter M
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous flow actuation between external reservoirs in small-scale devices driven by surface acoustic waves.
    Dentry MB; Friend JR; Yeo LY
    Lab Chip; 2014 Feb; 14(4):750-8. PubMed ID: 24336764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic Sensing and Actuation in Laminate Structures Using Bondline-Embedded d35 Piezoelectric Sensors.
    Altammar H; Dhingra A; Salowitz N
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications.
    Sankaranarayanan SK; Bhethanabotla VR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.