BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 29624608)

  • 1. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain.
    Schuelke J; Meyers N; Reitmaier S; Klose S; Ignatius A; Claes L
    PLoS One; 2018; 13(4):e0195466. PubMed ID: 29624608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction.
    Claes L; Meyers N; Schülke J; Reitmaier S; Klose S; Ignatius A
    PLoS One; 2018; 13(8):e0202702. PubMed ID: 30138362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method for lateral callus distraction and its importance for the mechano-biology of bone formation.
    Claes L; Veeser A; Göckelmann M; Horvath D; Dürselen L; Ignatius A
    Bone; 2010 Oct; 47(4):712-7. PubMed ID: 20637324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of compression on the healing of experimental tibial fractures.
    Sigurdsen U; Reikeras O; Utvag SE
    Injury; 2011 Oct; 42(10):1152-6. PubMed ID: 20850739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Percutaneous CO2 Treatment Accelerates Bone Generation During Distraction Osteogenesis in Rabbits.
    Kumabe Y; Fukui T; Takahara S; Kuroiwa Y; Arakura M; Oe K; Oda T; Sawauchi K; Matsushita T; Matsumoto T; Hayashi S; Kuroda R; Niikura T
    Clin Orthop Relat Res; 2020 Aug; 478(8):1922-1935. PubMed ID: 32732577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits.
    Shimazaki A; Inui K; Azuma Y; Nishimura N; Yamano Y
    J Bone Joint Surg Br; 2000 Sep; 82(7):1077-82. PubMed ID: 11041605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-intensity pulsed ultrasound enhances callus consolidation in distraction osteogenesis of the tibia by the technique of lengthening over the nail procedure.
    Song MH; Kim TJ; Kang SH; Song HR
    BMC Musculoskelet Disord; 2019 Mar; 20(1):108. PubMed ID: 30871538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of bone matrix proteins mRNA during distraction osteogenesis.
    Sato M; Yasui N; Nakase T; Kawahata H; Sugimoto M; Hirota S; Kitamura Y; Nomura S; Ochi T
    J Bone Miner Res; 1998 Aug; 13(8):1221-31. PubMed ID: 9718189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear movement at the fracture site delays healing in a diaphyseal fracture model.
    Augat P; Burger J; Schorlemmer S; Henke T; Peraus M; Claes L
    J Orthop Res; 2003 Nov; 21(6):1011-7. PubMed ID: 14554213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of methods for assigning the material properties of the distraction callus in computational models.
    Mora-Macías J; Giráldez-Sánchez MÁ; López M; Domínguez J; Reina-Romo ME
    Int J Numer Method Biomed Eng; 2019 Sep; 35(9):e3227. PubMed ID: 31197959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo.
    Mora-Macías J; Reina-Romo E; Domínguez J
    Med Eng Phys; 2015 Oct; 37(10):969-78. PubMed ID: 26320818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanobiology of skeletal regeneration.
    Carter DR; Beaupré GS; Giori NJ; Helms JA
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S41-55. PubMed ID: 9917625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible problems of moulding the regenerate in mandibular distraction osteogenesis -- experimental aspects in a canine model.
    Kunz C; Adolphs N; Buescher P; Hammer B; Rahn B
    J Craniomaxillofac Surg; 2005 Dec; 33(6):377-85. PubMed ID: 16253512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of cyclic compression and distraction on the healing of experimental tibial fractures.
    Hente R; Füchtmeier B; Schlegel U; Ernstberger A; Perren SM
    J Orthop Res; 2004 Jul; 22(4):709-15. PubMed ID: 15183425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal timing for intermittent administration of parathyroid hormone (1-34) for distraction osteogenesis in rabbits.
    Inada N; Ohata T; Maruno H; Morii T; Hosogane N; Ichimura S
    J Orthop Surg Res; 2022 Mar; 17(1):130. PubMed ID: 35241115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of various types of stiffness as predictors of the load-bearing capacity of callus tissue.
    Floerkemeier T; Hurschler C; Witte F; Wellmann M; Thorey F; Vogt U; Windhagen H
    J Bone Joint Surg Br; 2005 Dec; 87(12):1694-9. PubMed ID: 16326889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical and densitometric bone properties after callus distraction in sheep.
    Reichel H; Lebek S; Alter C; Hein W
    Clin Orthop Relat Res; 1998 Dec; (357):237-46. PubMed ID: 9917722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Callus stimulation in distraction osteogenesis.
    Mofid MM; Inoue N; Atabey A; Marti G; Chao EY; Manson PN; Vander Kolk CA
    Plast Reconstr Surg; 2002 Apr; 109(5):1621-9. PubMed ID: 11932606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Callus Distraction in the Treatment of Post-Traumatic Defects of the Femur and Tibia].
    Veselý R; Procházka V
    Acta Chir Orthop Traumatol Cech; 2016; 83(6):388-392. PubMed ID: 28026734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distraction osteogenesis of the canine mandible: the impact of acute callus manipulation on vascularization and early bone formation.
    Kunz C; Adolphs N; Buescher P; Hammer B; Rahn B
    J Oral Maxillofac Surg; 2005 Jan; 63(1):93-102. PubMed ID: 15635563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.