These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 29624708)

  • 21. Effects of radiation dose levels and spectral iterative reconstruction levels on the accuracy of iodine quantification and virtual monochromatic CT numbers in dual-layer spectral detector CT: an iodine phantom study.
    Lu X; Lu Z; Yin J; Gao Y; Chen X; Guo Q
    Quant Imaging Med Surg; 2019 Feb; 9(2):188-200. PubMed ID: 30976543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-Energy Computed Tomography for the Characterization of Intracranial Hemorrhage and Calcification: A Systematic Approach in a Phantom System.
    Nute JL; Jacobsen MC; Chandler A; Cody DD; Schellingerhout D
    Invest Radiol; 2017 Jan; 52(1):30-41. PubMed ID: 27379697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lung dual energy CT: Impact of different technological solutions on quantitative analysis.
    Ghetti C; Ortenzia O; Bertolini M; Sceni G; Sverzellati N; Silva M; Maddalo M
    Eur J Radiol; 2023 Jun; 163():110812. PubMed ID: 37068414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-energy computed tomography quality control: Initial experiences with a semi-automatic analysis tool.
    Sauranen S; Mäkelä T; Kaasalainen T; Kortesniemi M
    Phys Med; 2024 Feb; 118():103211. PubMed ID: 38237302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Technical Note: Quantitative accuracy evaluation for spectral images from a detector-based spectral CT scanner using an iodine phantom.
    Duan X; Arbique G; Guild J; Xi Y; Anderson J
    Med Phys; 2018 May; 45(5):2048-2053. PubMed ID: 29479712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-source photon counting detector CT with a tin filter: a phantom study on iodine quantification performance.
    Tao A; Huang R; Tao S; Michalak GJ; McCollough CH; Leng S
    Phys Med Biol; 2019 May; 64(11):115019. PubMed ID: 31018197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates.
    Hünemohr N; Krauss B; Tremmel C; Ackermann B; Jäkel O; Greilich S
    Phys Med Biol; 2014 Jan; 59(1):83-96. PubMed ID: 24334601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of renal stone composition in phantom and patients using single-source dual-energy computed tomography.
    Kulkarni NM; Eisner BH; Pinho DF; Joshi MC; Kambadakone AR; Sahani DV
    J Comput Assist Tomogr; 2013; 37(1):37-45. PubMed ID: 23321831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship.
    Saito M
    Med Phys; 2012 Apr; 39(4):2021-30. PubMed ID: 22482623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of image quality and accuracy of low iodine concentration quantification as function of kVp pairs for abdominal imaging using dual-source CT: A phantom study.
    Dabli D; Frandon J; Hamard A; Belaouni A; Addala T; Beregi JP; Greffier J
    Phys Med; 2021 Aug; 88():285-292. PubMed ID: 34358863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron density and effective atomic number estimation in a maximum a posteriori framework for dual-energy computed tomography.
    Simard M; Bär E; Blais D; Bouchard H
    Med Phys; 2020 Sep; 47(9):4137-4149. PubMed ID: 32491193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimized low-kV spectrum of dual-energy CT equipped with high-kV tin filtration for electron density measurements.
    Saito M
    Med Phys; 2011 Jun; 38(6):2850-8. PubMed ID: 21815360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner.
    Goodsitt MM; Christodoulou EG; Larson SC
    Med Phys; 2011 Apr; 38(4):2222-32. PubMed ID: 21626956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of quantification accuracy and image quality of a full-body dual-layer spectral CT system.
    Ehn S; Sellerer T; Muenzel D; Fingerle AA; Kopp F; Duda M; Mei K; Renger B; Herzen J; Dangelmaier J; Schwaiger BJ; Sauter A; Riederer I; Renz M; Braren R; Rummeny EJ; Pfeiffer F; Noël PB
    J Appl Clin Med Phys; 2018 Jan; 19(1):204-217. PubMed ID: 29266724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantification of the volume fraction of fat, water and bone mineral in spongiosa for red marrow dosimetry in molecular radiotherapy by using a dual-energy (SPECT/)CT.
    Salas-Ramirez M; Lassmann M; Tran-Gia J
    Z Med Phys; 2022 Nov; 32(4):428-437. PubMed ID: 35292186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations.
    Bazalova M; Carrier JF; Beaulieu L; Verhaegen F
    Phys Med Biol; 2008 May; 53(9):2439-56. PubMed ID: 18421124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of scan parameters on the accuracies of iodine quantification and hounsfield unit values in dual layer dual-energy head and neck computed tomography: A phantom study conducted in a hospital in Japan.
    Sakai Y; Shirasaka T; Hioki K; Yamane S; Kinoshita E; Kato T
    Radiography (Lond); 2023 Aug; 29(5):838-844. PubMed ID: 37393738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of relative proton stopping power measurements across patient size using dual- and single-energy CT.
    Michalak G; Taasti V; Krauss B; Deisher A; Halaweish A; McCollough C
    Acta Oncol; 2017 Nov; 56(11):1465-1471. PubMed ID: 28885130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assignment of the biological value of solid breast masses based on quantitative evaluations of spectral CT examinations using electron density mapping, Zeffective mapping and iodine mapping.
    Klein K; Schafigh DG; Wallis MG; Campbell GM; Malter W; Schömig-Markiefka B; Maintz D; Hellmich M; Krug KB
    Eur J Radiol; 2024 Feb; 171():111280. PubMed ID: 38219351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.