BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29624772)

  • 1. Separation of trait and state in stuttering.
    Connally EL; Ward D; Pliatsikas C; Finnegan S; Jenkinson M; Boyles R; Watkins KE
    Hum Brain Mapp; 2018 Aug; 39(8):3109-3126. PubMed ID: 29624772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neurological underpinnings of cluttering: Some initial findings.
    Ward D; Connally EL; Pliatsikas C; Bretherton-Furness J; Watkins KE
    J Fluency Disord; 2015 Mar; 43():1-16. PubMed ID: 25662409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional abnormalities of the motor system in developmental stuttering.
    Watkins KE; Smith SM; Davis S; Howell P
    Brain; 2008 Jan; 131(Pt 1):50-9. PubMed ID: 17928317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain correlates of stuttering and syllable production. A PET performance-correlation analysis.
    Fox PT; Ingham RJ; Ingham JC; Zamarripa F; Xiong JH; Lancaster JL
    Brain; 2000 Oct; 123 ( Pt 10)():1985-2004. PubMed ID: 11004117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Basal Ganglia and Its Neuronal Connections in the Development of Stuttering: A Review Article.
    G D; B H S; Gajbe U; Singh BR; Sawal A; Balwir T
    Cureus; 2022 Aug; 14(8):e28653. PubMed ID: 36196326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single word reading in developmental stutterers and fluent speakers.
    Salmelin R; Schnitzler A; Schmitz F; Freund HJ
    Brain; 2000 Jun; 123 ( Pt 6)():1184-202. PubMed ID: 10825357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond production: Brain responses during speech perception in adults who stutter.
    Halag-Milo T; Stoppelman N; Kronfeld-Duenias V; Civier O; Amir O; Ezrati-Vinacour R; Ben-Shachar M
    Neuroimage Clin; 2016; 11():328-338. PubMed ID: 27298762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stuttering as a trait or state - an ALE meta-analysis of neuroimaging studies.
    Belyk M; Kraft SJ; Brown S
    Eur J Neurosci; 2015 Jan; 41(2):275-84. PubMed ID: 25350867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter.
    Beal DS; Gracco VL; Brettschneider J; Kroll RM; De Nil LF
    Cortex; 2013 Sep; 49(8):2151-61. PubMed ID: 23140891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain correlates of stuttering and syllable production: gender comparison and replication.
    Ingham RJ; Fox PT; Ingham JC; Xiong J; Zamarripa F; Hardies LJ; Lancaster JL
    J Speech Lang Hear Res; 2004 Apr; 47(2):321-41. PubMed ID: 15157133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered functional connectivity in persistent developmental stuttering.
    Yang Y; Jia F; Siok WT; Tan LH
    Sci Rep; 2016 Jan; 6():19128. PubMed ID: 26743821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous morphology in left hemisphere motor and premotor cortex of children who stutter.
    Garnett EO; Chow HM; Nieto-Castañón A; Tourville JA; Guenther FH; Chang SE
    Brain; 2018 Sep; 141(9):2670-2684. PubMed ID: 30084910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering.
    Metzger FL; Auer T; Helms G; Paulus W; Frahm J; Sommer M; Neef NE
    Brain Struct Funct; 2018 Jan; 223(1):165-182. PubMed ID: 28741037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses.
    Neef NE; Bütfering C; Anwander A; Friederici AD; Paulus W; Sommer M
    Neuroimage; 2016 Nov; 142():628-644. PubMed ID: 27542724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disrupted white matter in language and motor tracts in developmental stuttering.
    Connally EL; Ward D; Howell P; Watkins KE
    Brain Lang; 2014 Apr; 131():25-35. PubMed ID: 23819900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional neural circuits that underlie developmental stuttering.
    Qiao J; Wang Z; Zhao G; Huo Y; Herder CL; Sikora CO; Peterson BS
    PLoS One; 2017; 12(7):e0179255. PubMed ID: 28759567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of anxiety in stuttering: Evidence from functional connectivity.
    Yang Y; Jia F; Siok WT; Tan LH
    Neuroscience; 2017 Mar; 346():216-225. PubMed ID: 27919696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Common features of fluency-evoking conditions studied in stuttering subjects and controls: an H(2)15O PET study.
    Stager SV; Jeffries KJ; Braun AR
    J Fluency Disord; 2003; 28(4):319-35; quiz 336. PubMed ID: 14643068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain activity in adults who stutter: similarities across speaking tasks and correlations with stuttering frequency and speaking rate.
    Ingham RJ; Grafton ST; Bothe AK; Ingham JC
    Brain Lang; 2012 Jul; 122(1):11-24. PubMed ID: 22564749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A preliminary study on the neural oscillatory characteristics of motor preparation prior to dysfluent and fluent utterances in adults who stutter.
    Mersov A; Cheyne D; Jobst C; De Nil L
    J Fluency Disord; 2018 Mar; 55():145-155. PubMed ID: 28577876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.