These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

795 related articles for article (PubMed ID: 29625091)

  • 1. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions.
    de Fuentes-Vicente JA; Gutiérrez-Cabrera AE; Flores-Villegas AL; Lowenberger C; Benelli G; Salazar-Schettino PM; Córdoba-Aguilar A
    Acta Trop; 2018 Jul; 183():23-31. PubMed ID: 29625091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management.
    Mougabure-Cueto G; Picollo MI
    Acta Trop; 2015 Sep; 149():70-85. PubMed ID: 26003952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic insecticide treatment of the canine reservoir of Trypanosoma cruzi induces high levels of lethality in Triatoma infestans, a principal vector of Chagas disease.
    Loza A; Talaga A; Herbas G; Canaviri RJ; Cahuasiri T; Luck L; Guibarra A; Goncalves R; Pereira JA; Gomez SA; Picado A; Messenger LA; Bern C; Courtenay O
    Parasit Vectors; 2017 Jul; 10(1):344. PubMed ID: 28724448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Panstrongylus geniculatus and four other species of triatomine bug involved in the Trypanosoma cruzi enzootic cycle: high risk factors for Chagas' disease transmission in the Metropolitan District of Caracas, Venezuela.
    Carrasco HJ; Segovia M; Londoño JC; Ortegoza J; Rodríguez M; Martínez CE
    Parasit Vectors; 2014 Dec; 7():602. PubMed ID: 25532708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triatomine bugs, their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected blood meal.
    Díaz S; Villavicencio B; Correia N; Costa J; Haag KL
    Parasit Vectors; 2016 Dec; 9(1):636. PubMed ID: 27938415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families.
    Traverso L; Lavore A; Sierra I; Palacio V; Martinez-Barnetche J; Latorre-Estivalis JM; Mougabure-Cueto G; Francini F; Lorenzo MG; Rodríguez MH; Ons S; Rivera-Pomar RV
    PLoS Negl Trop Dis; 2017 Feb; 11(2):e0005313. PubMed ID: 28199333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eco-epidemiological study reveals the importance of Triatoma dimidiata in the Trypanosoma cruzi transmission, in a municipality certified without transmission by Rhodnius prolixus in Colombia.
    Cantillo-Barraza O; Medina M; Zuluaga S; Valverde C; Motta C; Ladino A; Osorio MI; Jaimes-Dueñez J; Triana-Chávez O
    Acta Trop; 2020 Sep; 209():105550. PubMed ID: 32473116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing vector competence of Mepraia gajardoi and Triatoma infestans by genotyping Trypanosoma cruzi discrete typing units present in naturally infected Octodon degus.
    Sandoval-Rodríguez A; Rojo G; López A; Ortiz S; Saavedra M; Botto-Mahan C; Cattan PE; Solari A
    Acta Trop; 2019 Feb; 190():119-122. PubMed ID: 30439345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypanosoma cruzi Infection Prevalence and Bloodmeal Analysis in Triatomine Vectors of Chagas Disease From Rural Peridomestic Locations in Texas, 2013-2014.
    Gorchakov R; Trosclair LP; Wozniak EJ; Feria PT; Garcia MN; Gunter SM; Murray KO
    J Med Entomol; 2016 Jul; 53(4):911-918. PubMed ID: 27106934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia.
    Murillo-Solano C; López-Domínguez J; Gongora R; Rojas-Gulloso A; Usme-Ciro J; Perdomo-Balaguera E; Herrera C; Parra-Henao G; Dumonteil E
    Sci Rep; 2021 Jun; 11(1):12306. PubMed ID: 34112903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hindgut microbiota in laboratory-reared and wild Triatoma infestans.
    Waltmann A; Willcox AC; Balasubramanian S; Borrini Mayori K; Mendoza Guerrero S; Salazar Sanchez RS; Roach J; Condori Pino C; Gilman RH; Bern C; Juliano JJ; Levy MZ; Meshnick SR; Bowman NM
    PLoS Negl Trop Dis; 2019 May; 13(5):e0007383. PubMed ID: 31059501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ecotopes and evolution of triatomine bugs (triatominae) and their associated trypanosomes.
    Gaunt M; Miles M
    Mem Inst Oswaldo Cruz; 2000; 95(4):557-65. PubMed ID: 10904415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disentangling Trypanosoma cruzi transmission cycle dynamics through the identification of blood meal sources of natural populations of Triatoma dimidiata in Yucatán, Mexico.
    Moo-Millan JI; Arnal A; Pérez-Carrillo S; Hernandez-Andrade A; Ramírez-Sierra MJ; Rosado-Vallado M; Dumonteil E; Waleckx E
    Parasit Vectors; 2019 Nov; 12(1):572. PubMed ID: 31783778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Chagas disease domestic transmission cycle in Guatemala: Parasite-vector switches and lack of mitochondrial co-diversification between Triatoma dimidiata and Trypanosoma cruzi subpopulations suggest non-vectorial parasite dispersal across the Motagua valley.
    Pennington PM; Messenger LA; Reina J; Juárez JG; Lawrence GG; Dotson EM; Llewellyn MS; Cordón-Rosales C
    Acta Trop; 2015 Nov; 151():80-7. PubMed ID: 26215126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-epidemiological study of an endemic Chagas disease region in northern Colombia reveals the importance of Triatoma maculata (Hemiptera: Reduviidae), dogs and Didelphis marsupialis in Trypanosoma cruzi maintenance.
    Cantillo-Barraza O; Garcés E; Gómez-Palacio A; Cortés LA; Pereira A; Marcet PL; Jansen AM; Triana-Chávez O
    Parasit Vectors; 2015 Sep; 8():482. PubMed ID: 26394766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reduction in ecological niche for Trypanosoma cruzi-infected triatomine bugs.
    Villalobos G; Nava-Bolaños A; De Fuentes-Vicente JA; Téllez-Rendón JL; Huerta H; Martínez-Hernández F; Rocha-Ortega M; Gutiérrez-Cabrera AE; Ibarra-Cerdeña CN; Córdoba-Aguilar A
    Parasit Vectors; 2019 May; 12(1):240. PubMed ID: 31097007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptations in energy metabolism and gene family expansions revealed by comparative transcriptomics of three Chagas disease triatomine vectors.
    Martínez-Barnetche J; Lavore A; Beliera M; Téllez-Sosa J; Zumaya-Estrada FA; Palacio V; Godoy-Lozano E; Rivera-Pomar R; Rodríguez MH
    BMC Genomics; 2018 Apr; 19(1):296. PubMed ID: 29699489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infection Rate by Trypanosoma cruzi and Biased Vertebrate Host Selection in the Triatoma dimidiata (Hemiptera: Reduvidae) Species Complex.
    Ramirez-Sierra MJ; Dumonteil E
    J Med Entomol; 2016 Jan; 53(1):20-5. PubMed ID: 26474882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential risk of enzootic Trypanosoma cruzi transmission inside four training and re-training military battalions (BITER) in Colombia.
    Cantillo-Barraza O; Torres J; Hernández C; Romero Y; Zuluaga S; Correa-Cárdenas CA; Herrera G; Rodríguez O; Alvarado MT; Ramírez JD; Méndez C
    Parasit Vectors; 2021 Oct; 14(1):519. PubMed ID: 34625109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Analysis of Repetitive DNA between the Main Vectors of Chagas Disease: Triatoma infestans and Rhodnius prolixus.
    Pita S; Mora P; Vela J; Palomeque T; Sánchez A; Panzera F; Lorite P
    Int J Mol Sci; 2018 Apr; 19(5):. PubMed ID: 29695139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.