BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29625217)

  • 41. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes.
    Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD
    J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microscopic cuticle structure comparison of pupal melanic and wild strain of Spodoptera exigua and their gene expression profiles in three time points.
    Jan S; Li C; Liu S; Liu X; Zhu F; Hafeez M; Wang M
    Microb Pathog; 2018 Jan; 114():483-493. PubMed ID: 29196168
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential Phototactic Behavior of Closely Related Cyanobacterial Isolates from Yellowstone Hot Spring Biofilms.
    Bunbury F; Rivas C; Calatrava V; Shelton AN; Grossman A; Bhaya D
    Appl Environ Microbiol; 2022 May; 88(10):e0019622. PubMed ID: 35499327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PGE(2) induces oenocytoid cell lysis via a G protein-coupled receptor in the beet armyworm, Spodoptera exigua.
    Shrestha S; Stanley D; Kim Y
    J Insect Physiol; 2011 Nov; 57(11):1568-76. PubMed ID: 21867708
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new cell line (NTU-SE) from pupal tissues of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), is highly susceptible to S. exigua multiple nucleopolyhedrovirus (SeMNPV) and Autographa californica MNPV (AcMNPV).
    Wu CY; Chen YW; Lin CC; Hsu CL; Wang CH; Lo CF
    J Invertebr Pathol; 2012 Oct; 111(2):143-51. PubMed ID: 22867846
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An immunological role of a PKC alpha binding protein (PICK1) expressed in the hemocytes of the beet armyworm, Spodoptera exigua.
    Shrestha S; Prasad SV; Kim Y
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Mar; 158(3):216-22. PubMed ID: 21122821
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification and tissue distribution of odorant binding protein genes in the beet armyworm, Spodoptera exigua.
    Zhu JY; Zhang LF; Ze SZ; Wang DW; Yang B
    J Insect Physiol; 2013 Jul; 59(7):722-8. PubMed ID: 23499610
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diel changes in the expression of long wavelength-sensitive and ultraviolet-sensitive opsin genes in the Japanese firefly, Luciola cruciata.
    Oba Y; Kainuma T
    Gene; 2009 May; 436(1-2):66-70. PubMed ID: 19232386
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and Functional Analysis of a Novel Cytochrome P450 Gene CYP9A105 Associated with Pyrethroid Detoxification in Spodoptera exigua Hübner.
    Wang RL; Liu SW; Baerson SR; Qin Z; Ma ZH; Su YJ; Zhang JE
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29510578
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification and RNA Interference of the Pheromone Biosynthesis Activating Neuropeptide (PBAN) in the Common Cutworm Moth Spodoptera litura (Lepidoptera: Noctuidae).
    Lu Q; Huang LY; Chen P; Yu JF; Xu J; Deng JY; Ye H
    J Econ Entomol; 2015 Jun; 108(3):1344-53. PubMed ID: 26470263
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The evolution and expression of the moth visual opsin family.
    Xu P; Lu B; Xiao H; Fu X; Murphy RW; Wu K
    PLoS One; 2013; 8(10):e78140. PubMed ID: 24205129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reconstructing the ancestral butterfly eye: focus on the opsins.
    Briscoe AD
    J Exp Biol; 2008 Jun; 211(Pt 11):1805-13. PubMed ID: 18490396
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and Characterization of Candidate Chemosensory Gene Families from Spodoptera exigua Developmental Transcriptomes.
    Liu NY; Zhang T; Ye ZF; Li F; Dong SL
    Int J Biol Sci; 2015; 11(9):1036-48. PubMed ID: 26221071
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of green light illumination at night on biological characteristics of the oriental armyworm,
    Kim KN; Jo YC; Huang ZJ; Song HS; Ryu KH; Huang QY; Lei CL
    Bull Entomol Res; 2020 Feb; 110(1):136-143. PubMed ID: 31203829
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spectral sensitivity of phototaxis in the dinoflagellate Kryptoperidinium foliaceum and their reaction to physical encounters.
    Moldrup M; Garm A
    J Exp Biol; 2012 Jul; 215(Pt 13):2342-6. PubMed ID: 22675196
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes.
    Herrero S; Gechev T; Bakker PL; Moar WJ; de Maagd RA
    BMC Genomics; 2005 Jun; 6():96. PubMed ID: 15978131
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic basis of differential opsin gene expression in cichlid fishes.
    Carleton KL; Hofmann CM; Klisz C; Patel Z; Chircus LM; Simenauer LH; Soodoo N; Albertson RC; Ser JR
    J Evol Biol; 2010 Apr; 23(4):840-53. PubMed ID: 20210829
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wavelength-specific negatively phototactic responses of the burrowing mayfly larvae Ephoron virgo.
    Mészáros Á; Kriska G; Egri Á
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38699809
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phototactic preference and its genetic basis in the planulae of the colonial Hydrozoan
    Birch S; McGee L; Provencher C; DeMio C; Plachetzki D
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617216
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emergent Phototactic Responses of Cyanobacteria under Complex Light Regimes.
    Chau RM; Bhaya D; Huang KC
    mBio; 2017 Mar; 8(2):. PubMed ID: 28270586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.