BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29625399)

  • 1. Optimization of lactic acid fermentation for pathogen inactivation in fecal sludge.
    Odey EA; Li Z; Zhou X; Yan Y
    Ecotoxicol Environ Saf; 2018 Aug; 157():249-254. PubMed ID: 29625399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locally produced lactic acid bacteria for pathogen inactivation and odor control in fecal sludge.
    Odey EA; Li Z; Zhou X; Yan Y
    J Clean Prod; 2018 May; 184():798-805. PubMed ID: 29789757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of lactic acid derived from food waste on pathogen inactivation in fecal sludge: a review on the alternative use of food waste.
    Odey EA; Abo BO; Li Z; Zhou X
    Rev Environ Health; 2018 Dec; 33(4):423-431. PubMed ID: 30307898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of septage sanitization by limes and lactic acid fermentation.
    Masís-Meléndez F; Segura-Montero F; Quesada-González A
    J Environ Manage; 2021 Jun; 287():112203. PubMed ID: 33735674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of the microflora of attiéké, a fermented cassava product, during traditional small-scale preparation.
    Coulin P; Farah Z; Assanvo J; Spillmann H; Puhan Z
    Int J Food Microbiol; 2006 Feb; 106(2):131-6. PubMed ID: 16213052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread.
    Axel C; Brosnan B; Zannini E; Furey A; Coffey A; Arendt EK
    Int J Food Microbiol; 2016 Dec; 239():86-94. PubMed ID: 27236463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation.
    Anderson C; Malambo DH; Perez ME; Nobela HN; de Pooter L; Spit J; Hooijmans CM; de Vossenberg Jv; Greya W; Thole B; van Lier JB; Brdjanovic D
    Int J Environ Res Public Health; 2015 Oct; 12(11):13871-85. PubMed ID: 26528995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodiversity and technological potential of lactic acid bacteria isolated from spontaneously fermented amaranth sourdough.
    Ruiz Rodríguez L; Vera Pingitore E; Rollan G; Martos G; Saavedra L; Fontana C; Hebert EM; Vignolo G
    Lett Appl Microbiol; 2016 Aug; 63(2):147-54. PubMed ID: 27282128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient production of L-lactic acid from cassava powder by Lactobacillus rhamnosus.
    Wang L; Zhao B; Liu B; Yang C; Yu B; Li Q; Ma C; Xu P; Ma Y
    Bioresour Technol; 2010 Oct; 101(20):7895-901. PubMed ID: 20627717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactic acid fermentation of cassava dough into agbelima.
    Amoa-Awua WK; Appoh FE; Jakobsen M
    Int J Food Microbiol; 1996 Aug; 31(1-3):87-98. PubMed ID: 8880299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial interactions of microbial species involved in the fermentation of cassava dough into agbelima with particular reference to the inhibitory effect of lactic acid bacteria on enteric pathogens.
    Mante ES; Sakyi-Dawson E; Amoa-Awua WK
    Int J Food Microbiol; 2003 Dec; 89(1):41-50. PubMed ID: 14580972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous saccharification and fermentation of cassava bagasse for L-(+)-lactic Acid production using Lactobacilli.
    John RP; Nampoothiri KM; Pandey A
    Appl Biochem Biotechnol; 2006 Sep; 134(3):263-72. PubMed ID: 16960284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyphasic Microbial Analysis of Traditional Korean Jeung-Pyun Sourdough Fermented with Makgeolli.
    Lim SB; Tingirikari JM; Kwon YW; Li L; Kim GE; Han NS
    J Microbiol Biotechnol; 2017 Feb; 27(2):226-233. PubMed ID: 27780959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Lactobacillus plantarum Inoculum on the Fermentation Rate and Rice Noodle Quality.
    Geng DH; Liu L; Zhou S; Sun X; Wang L; Zhou X; Tong LT
    J Oleo Sci; 2020 Sep; 69(9):1031-1041. PubMed ID: 32788512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the possibility of fermentation of red grape juice and rice flour by
    Mirmohammadi R; Zamindar N; Razavi SH; Mirmohammadi M; Paidari S
    Food Sci Nutr; 2021 Oct; 9(10):5370-5378. PubMed ID: 36225214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactic acid production from submerged fermentation of broken rice using undefined mixed culture.
    Nunes LV; de Barros Correa FF; de Oliva Neto P; Mayer CR; Escaramboni B; Campioni TS; de Barros NR; Herculano RD; Fernández Núñez EG
    World J Microbiol Biotechnol; 2017 Apr; 33(4):79. PubMed ID: 28341908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance of Lactobacillus casei in plastic-composite-support biofilm reactors during liquid membrane extraction and optimization of the lactic acid extraction system.
    Demirci A; Cotton JC; Pometto AL; Harkins KR; Hinz PN
    Biotechnol Bioeng; 2003 Sep; 83(7):749-59. PubMed ID: 12889015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources.
    Altaf M; Venkateshwar M; Srijana M; Reddy G
    J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial population, chemical composition and silage fermentation of cassava residues.
    Napasirth V; Napasirth P; Sulinthone T; Phommachanh K; Cai Y
    Anim Sci J; 2015 Sep; 86(9):842-8. PubMed ID: 25781881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nondairy beverage produced by controlled fermentation with potential probiotic starter cultures of lactic acid bacteria and yeast.
    Freire AL; Ramos CL; da Costa Souza PN; Cardoso MG; Schwan RF
    Int J Food Microbiol; 2017 May; 248():39-46. PubMed ID: 28242421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.