BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 29625423)

  • 1. Elucidation of the intra- and inter-molecular electron transfer pathways of glucoside 3-dehydrogenase.
    Miyazaki R; Yamazaki T; Yoshimatsu K; Kojima K; Asano R; Sode K; Tsugawa W
    Bioelectrochemistry; 2018 Aug; 122():115-122. PubMed ID: 29625423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes.
    Shiota M; Yamazaki T; Yoshimatsu K; Kojima K; Tsugawa W; Ferri S; Sode K
    Bioelectrochemistry; 2016 Dec; 112():178-83. PubMed ID: 26951961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and expression of glucose 3-dehydrogenase from Halomonas sp. alpha-15 in Escherichia coli.
    Kojima K; Tsugawa W; Sode K
    Biochem Biophys Res Commun; 2001 Mar; 282(1):21-7. PubMed ID: 11263965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein.
    Yoshida H; Kojima K; Shiota M; Yoshimatsu K; Yamazaki T; Ferri S; Tsugawa W; Kamitori S; Sode K
    Acta Crystallogr D Struct Biol; 2019 Sep; 75(Pt 9):841-851. PubMed ID: 31478907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and expression of d-glucoside 3-dehydrogenase from Rhizobium sp. S10 in Escherichia coli and its application for d-gulose production.
    Yotsombat A; Hasegawa T; Mino K; Takata G
    Protein Expr Purif; 2019 Apr; 156():58-65. PubMed ID: 30629972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase.
    Yamashita Y; Suzuki N; Hirose N; Kojima K; Tsugawa W; Sode K
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of the glucoside 3-dehydrogenase produced by a newly isolated Stenotrophomonas maltrophilia CCTCC M 204024.
    Zhang JF; Zheng YG; Xue YP; Shen YC
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):638-45. PubMed ID: 16292530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-protein interactions between cytochrome b and the Fe-S protein subunits during QH2 oxidation and large-scale domain movement in the bc1 complex.
    Darrouzet E; Daldal F
    Biochemistry; 2003 Feb; 42(6):1499-507. PubMed ID: 12578362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-Ketoglycoside-mediated metabolism of sucrose in E. coli as conferred by genes from Agrobacterium tumefaciens.
    Schuerman PL; Liu JS; Mou H; Dandekar AM
    Appl Microbiol Biotechnol; 1997 May; 47(5):560-5. PubMed ID: 9210346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of a glucoside 3-dehydrogenase-producing strain, Sphingobacterium faecium, based on a high-throughput screening method and optimization of the culture conditions for enzyme production.
    Zhang J; Chen W; Ke W; Chen H
    Appl Biochem Biotechnol; 2014 Apr; 172(7):3448-60. PubMed ID: 24532484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene cloning and expression of a glucoside 3-dehydrogenase from Sphingobacterium faecium ZJF-D6, and used it to produce N-p-nitrophenyl-3-ketovalidamine.
    Zhang JF; Chen WQ; Chen H
    World J Microbiol Biotechnol; 2017 Feb; 33(2):21. PubMed ID: 28044272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The unexpected structural role of glutamate synthase [4Fe-4S](+1,+2) clusters as demonstrated by site-directed mutagenesis of conserved C residues at the N-terminus of the enzyme beta subunit.
    Agnelli P; Dossena L; Colombi P; Mulazzi S; Morandi P; Tedeschi G; Negri A; Curti B; Vanoni MA
    Arch Biochem Biophys; 2005 Apr; 436(2):355-66. PubMed ID: 15797248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer.
    Lee YS; Baek S; Lee H; Reginald SS; Kim Y; Kang H; Choi IG; Chang IS
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28615-28626. PubMed ID: 30067023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 6-Hydroxypseudooxynicotine Dehydrogenase Delivers Electrons to Electron Transfer Flavoprotein during Nicotine Degradation by Agrobacterium tumefaciens S33.
    Wang R; Yi J; Shang J; Yu W; Li Z; Huang H; Xie H; Wang S
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926728
    [No Abstract]   [Full Text] [Related]  

  • 16. The delta-subunit of pyruvate ferredoxin oxidoreductase from Pyrococcus furiosus is a redox-active, iron-sulfur protein: evidence for an ancestral relationship with 8Fe-type ferredoxins.
    Menon AL; Hendrix H; Hutchins A; Verhagen MF; Adams MW
    Biochemistry; 1998 Sep; 37(37):12838-46. PubMed ID: 9737861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The recombinant alpha subunit of glutamate synthase: spectroscopic and catalytic properties.
    Vanoni MA; Fischer F; Ravasio S; Verzotti E; Edmondson DE; Hagen WR; Zanetti G; Curti B
    Biochemistry; 1998 Feb; 37(7):1828-38. PubMed ID: 9485308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.
    Ito K; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Ikebukuro K; Lin CE; La Belle J; Yoshida H; Sode K
    Biosens Bioelectron; 2019 Jan; 123():114-123. PubMed ID: 30057265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel NADPH-dependent reductase of Sulfobacillus acidophilus TPY phenol hydroxylase: expression, characterization, and functional analysis.
    Li M; Guo W; Chen X
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10417-10428. PubMed ID: 27376793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potentially insect-implantable trehalose electrooxidizing anode.
    Pothukuchy A; Mano N; Georgiou G; Heller A
    Biosens Bioelectron; 2006 Dec; 22(5):678-84. PubMed ID: 16546370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.