These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29625444)

  • 1. Predictive Mathematical Models for the Spread and Treatment of Hyperoxia-induced Photoreceptor Degeneration in Retinitis Pigmentosa.
    Roberts PA; Gaffney EA; Whiteley JP; Luthert PJ; Foss AJE; Byrne HM
    Invest Ophthalmol Vis Sci; 2018 Mar; 59(3):1238-1249. PubMed ID: 29625444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical models of retinitis pigmentosa: The oxygen toxicity hypothesis.
    Roberts PA; Gaffney EA; Luthert PJ; Foss AJE; Byrne HM
    J Theor Biol; 2017 Jul; 425():53-71. PubMed ID: 28483568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional loss of Spata7 in photoreceptors causes progressive retinal degeneration in mice.
    Eblimit A; Agrawal SA; Thomas K; Anastassov IA; Abulikemu T; Moayedi Y; Mardon G; Chen R
    Exp Eye Res; 2018 Jan; 166():120-130. PubMed ID: 29100828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical models of retinitis pigmentosa: The trophic factor hypothesis.
    Roberts PA
    J Theor Biol; 2022 Feb; 534():110938. PubMed ID: 34687673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment.
    Barone I; Novelli E; Strettoi E
    Mol Vis; 2014; 20():1545-56. PubMed ID: 25489227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal characterization of S- and M/L-cone degeneration in the Rd1 mouse model of retinitis pigmentosa.
    Narayan DS; Ao J; Wood JPM; Casson RJ; Chidlow G
    BMC Neurosci; 2019 Sep; 20(1):46. PubMed ID: 31481030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic strategy for handling inherited retinal degenerations in a gene-independent manner using rod-derived cone viability factors.
    Léveillard T; Fridlich R; Clérin E; Aït-Ali N; Millet-Puel G; Jaillard C; Yang Y; Zack D; van-Dorsselaer A; Sahel JA
    C R Biol; 2014 Mar; 337(3):207-13. PubMed ID: 24702847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa.
    Komeima K; Rogers BS; Campochiaro PA
    J Cell Physiol; 2007 Dec; 213(3):809-15. PubMed ID: 17520694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced inspired oxygen decreases retinal superoxide radicals and promotes cone function and survival in a model of retinitis pigmentosa.
    Kanan Y; Hackett SF; Hsueh HT; Khan M; Ensign LM; Campochiaro PA
    Free Radic Biol Med; 2023 Mar; 198():118-122. PubMed ID: 36736930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease.
    Sakami S; Imanishi Y; Palczewski K
    FASEB J; 2019 Mar; 33(3):3680-3692. PubMed ID: 30462532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia.
    Schön C; Asteriti S; Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Herms J; Seeliger MW; Cangiano L; Biel M; Michalakis S
    Hum Mol Genet; 2016 Mar; 25(6):1165-75. PubMed ID: 26740549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the metabolic contribution to photoreceptor death in retinitis pigmentosa via a mathematical model.
    Camacho ET; Punzo C; Wirkus SA
    J Theor Biol; 2016 Nov; 408():75-87. PubMed ID: 27519951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreceptor degeneration in vitamin A deprivation and retinitis pigmentosa: the equivalent light hypothesis.
    Fain GL; Lisman JE
    Exp Eye Res; 1993 Sep; 57(3):335-40. PubMed ID: 8224021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice.
    Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T
    Mol Vis; 2014; 20():1527-44. PubMed ID: 25489226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oncostatin M protects rod and cone photoreceptors and promotes regeneration of cone outer segment in a rat model of retinal degeneration.
    Xia X; Li Y; Huang D; Wang Z; Luo L; Song Y; Zhao L; Wen R
    PLoS One; 2011 Mar; 6(3):e18282. PubMed ID: 21479182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of the mechanisms of cone degeneration in retinitis pigmentosa.
    Narayan DS; Wood JP; Chidlow G; Casson RJ
    Acta Ophthalmol; 2016 Dec; 94(8):748-754. PubMed ID: 27350263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration.
    Gupta N; Brown KE; Milam AH
    Exp Eye Res; 2003 Apr; 76(4):463-71. PubMed ID: 12634111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cone loss is delayed relative to rod loss during induced retinal degeneration in the diurnal cone-rich rodent Arvicanthis ansorgei.
    Boudard DL; Tanimoto N; Huber G; Beck SC; Seeliger MW; Hicks D
    Neuroscience; 2010 Sep; 169(4):1815-30. PubMed ID: 20600653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of Small Molecule-Mediated Reprogramming of Rod Photoreceptors to Treat Retinitis Pigmentosa.
    Nakamura PA; Tang S; Shimchuk AA; Ding S; Reh TA
    Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6407-6415. PubMed ID: 27893103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of Sigma 1 Receptor Accelerates Photoreceptor Cell Death in a Murine Model of Retinitis Pigmentosa.
    Wang J; Saul A; Cui X; Roon P; Smith SB
    Invest Ophthalmol Vis Sci; 2017 Sep; 58(11):4545-4558. PubMed ID: 28877319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.