These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 29626206)

  • 1. High-throughput mouse phenomics for characterizing mammalian gene function.
    Brown SDM; Holmes CC; Mallon AM; Meehan TF; Smedley D; Wells S
    Nat Rev Genet; 2018 Jun; 19(6):357-370. PubMed ID: 29626206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in mouse genetics for the study of human disease.
    Brown SDM
    Hum Mol Genet; 2021 Oct; 30(R2):R274-R284. PubMed ID: 34089057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput phenotyping for crop improvement in the genomics era.
    Mir RR; Reynolds M; Pinto F; Khan MA; Bhat MA
    Plant Sci; 2019 May; 282():60-72. PubMed ID: 31003612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational approaches to phenotyping: high-throughput phenomics.
    Lussier YA; Liu Y
    Proc Am Thorac Soc; 2007 Jan; 4(1):18-25. PubMed ID: 17202287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse Phenome Database: a data repository and analysis suite for curated primary mouse phenotype data.
    Bogue MA; Philip VM; Walton DO; Grubb SC; Dunn MH; Kolishovski G; Emerson J; Mukherjee G; Stearns T; He H; Sinha V; Kadakkuzha B; Kunde-Ramamoorthy G; Chesler EJ
    Nucleic Acids Res; 2020 Jan; 48(D1):D716-D723. PubMed ID: 31696236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Organism Cellular Pathology: A Systems Approach to Phenomics.
    Cheng KC; Katz SR; Lin AY; Xin X; Ding Y
    Adv Genet; 2016; 95():89-115. PubMed ID: 27503355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives.
    Yang W; Feng H; Zhang X; Zhang J; Doonan JH; Batchelor WD; Xiong L; Yan J
    Mol Plant; 2020 Feb; 13(2):187-214. PubMed ID: 31981735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap.
    Großkinsky DK; Svensgaard J; Christensen S; Roitsch T
    J Exp Bot; 2015 Sep; 66(18):5429-40. PubMed ID: 26163702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational aspects underlying genome to phenome analysis in plants.
    Bolger AM; Poorter H; Dumschott K; Bolger ME; Arend D; Osorio S; Gundlach H; Mayer KFX; Lange M; Scholz U; Usadel B
    Plant J; 2019 Jan; 97(1):182-198. PubMed ID: 30500991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical Methods for the Quantitative Genetic Analysis of High-Throughput Phenotyping Data.
    Morota G; Jarquin D; Campbell MT; Iwata H
    Methods Mol Biol; 2022; 2539():269-296. PubMed ID: 35895210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies.
    Yang W; Duan L; Chen G; Xiong L; Liu Q
    Curr Opin Plant Biol; 2013 May; 16(2):180-7. PubMed ID: 23578473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse Phenotype Database Integration Consortium: integration [corrected] of mouse phenome data resources.
    ; Hancock JM; Adams NC; Aidinis V; Blake A; Bogue M; Brown SD; Chesler EJ; Davidson D; Duran C; Eppig JT; Gailus-Durner V; Gates H; Gkoutos GV; Greenaway S; Hrabé de Angelis M; Kollias G; Leblanc S; Lee K; Lengger C; Maier H; Mallon AM; Masuya H; Melvin DG; Müller W; Parkinson H; Proctor G; Reuveni E; Schofield P; Shukla A; Smith C; Toyoda T; Vasseur L; Wakana S; Walling A; White J; Wood J; Zouberakis M
    Mamm Genome; 2007 Mar; 18(3):157-63. PubMed ID: 17436037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenomics: the systematic study of phenotypes on a genome-wide scale.
    Bilder RM; Sabb FW; Cannon TD; London ED; Jentsch JD; Parker DS; Poldrack RA; Evans C; Freimer NB
    Neuroscience; 2009 Nov; 164(1):30-42. PubMed ID: 19344640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency.
    van Bezouw RFHM; Keurentjes JJB; Harbinson J; Aarts MGM
    Plant J; 2019 Jan; 97(1):112-133. PubMed ID: 30548574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat.
    Borrill P; Harrington SA; Uauy C
    Plant J; 2019 Jan; 97(1):56-72. PubMed ID: 30407665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development, Preparation, and Curation of High-Throughput Phenotypic Data for Genome-Wide Association Studies: A Sample Pipeline in R.
    Tripodi P
    Methods Mol Biol; 2022; 2481():105-125. PubMed ID: 35641761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding mammalian genetic systems: the challenge of phenotyping in the mouse.
    Brown SD; Hancock JM; Gates H
    PLoS Genet; 2006 Aug; 2(8):e118. PubMed ID: 16933996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disease gene discovery through integrative genomics.
    Giallourakis C; Henson C; Reich M; Xie X; Mootha VK
    Annu Rev Genomics Hum Genet; 2005; 6():381-406. PubMed ID: 16124867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant phenomics: High-throughput technology for accelerating genomics.
    Pasala R; Pandey BB
    J Biosci; 2020; 45():. PubMed ID: 32975238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.