These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29626221)

  • 21. A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast.
    Zhang XR; He JB; Wang YZ; Du LL
    G3 (Bethesda); 2018 May; 8(6):2067-2077. PubMed ID: 29703785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmid-free CRISPR/Cas9 genome editing in Saccharomyces cerevisiae.
    Nishimura A; Tanahashi R; Oi T; Kan K; Takagi H
    Biosci Biotechnol Biochem; 2023 Mar; 87(4):458-462. PubMed ID: 36694939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. History of genome editing in yeast.
    Fraczek MG; Naseeb S; Delneri D
    Yeast; 2018 May; 35(5):361-368. PubMed ID: 29345746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nontransgenic Marker-Free Gene Disruption by an Episomal CRISPR System in the Oleaginous Microalga, Nannochloropsis oceanica CCMP1779.
    Poliner E; Takeuchi T; Du ZY; Benning C; Farré EM
    ACS Synth Biol; 2018 Apr; 7(4):962-968. PubMed ID: 29518315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining Fusion of Cells with CRISPR-Cas9 Editing for the Cloning of Large DNA Fragments or Complete Bacterial Genomes in Yeast.
    Guesdon G; Gourgues G; Rideau F; Ipoutcha T; Manso-Silván L; Jules M; Sirand-Pugnet P; Blanchard A; Lartigue C
    ACS Synth Biol; 2023 Nov; 12(11):3252-3266. PubMed ID: 37843014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae.
    Yang S; Cao X; Yu W; Li S; Zhou YJ
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3037-3047. PubMed ID: 32043190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast.
    Lee NC; Larionov V; Kouprina N
    Nucleic Acids Res; 2015 Apr; 43(8):e55. PubMed ID: 25690893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of a fluoride channel as a new selection marker for fission yeast plasmids and application to fast genome editing with CRISPR/Cas9.
    Fernandez R; Berro J
    Yeast; 2016 Oct; 33(10):549-557. PubMed ID: 27327046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR-Cas9 Facilitated Multiple-Chromosome Fusion in Saccharomyces cerevisiae.
    Shao Y; Lu N; Qin Z; Xue X
    ACS Synth Biol; 2018 Nov; 7(11):2706-2708. PubMed ID: 30352154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 31. CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus.
    Liu Q; Jiang Y; Shao L; Yang P; Sun B; Yang S; Chen D
    Acta Biochim Biophys Sin (Shanghai); 2017 Sep; 49(9):764-770. PubMed ID: 28910979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae.
    Li ZH; Liu M; Wang FQ; Wei DZ
    Biotechnol Lett; 2018 Aug; 40(8):1253-1261. PubMed ID: 29797148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
    Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P
    Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid, scalable, combinatorial genome engineering by marker-less enrichment and recombination of genetically engineered loci in yeast.
    Abdullah M; Greco BM; Laurent JM; Garge RK; Boutz DR; Vandeloo M; Marcotte EM; Kachroo AH
    Cell Rep Methods; 2023 May; 3(5):100464. PubMed ID: 37323580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reshuffling yeast chromosomes with CRISPR/Cas9.
    Fleiss A; O'Donnell S; Fournier T; Lu W; Agier N; Delmas S; Schacherer J; Fischer G
    PLoS Genet; 2019 Aug; 15(8):e1008332. PubMed ID: 31465441
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast.
    Kang HS; Charlop-Powers Z; Brady SF
    ACS Synth Biol; 2016 Sep; 5(9):1002-10. PubMed ID: 27197732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recycling selectable markers in yeast.
    Sauer B
    Biotechniques; 1994 Jun; 16(6):1086-8. PubMed ID: 8074874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.