These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 29626221)

  • 61. [The new generation tool for CRISPR genome editing: CRISPR/Cpf1].
    Yang F; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2017 Mar; 33(3):361-371. PubMed ID: 28941336
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [CRISPR-Cas9 mediated genome editing in Caenorhabditis elegans].
    Meng X; Zhou H; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1693-1699. PubMed ID: 29082717
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System.
    Feng C; Yuan J; Wang R; Liu Y; Birchler JA; Han F
    J Genet Genomics; 2016 Jan; 43(1):37-43. PubMed ID: 26842992
    [TBL] [Abstract][Full Text] [Related]  

  • 66. CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential.
    Oude Blenke E; Evers MJ; Mastrobattista E; van der Oost J
    J Control Release; 2016 Dec; 244(Pt B):139-148. PubMed ID: 27498021
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The application of genome editing in studying hearing loss.
    Zou B; Mittal R; Grati M; Lu Z; Shu Y; Tao Y; Feng Y; Xie D; Kong W; Yang S; Chen ZY; Liu X
    Hear Res; 2015 Sep; 327():102-8. PubMed ID: 25987504
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 70. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art.
    Shi TQ; Liu GN; Ji RY; Shi K; Song P; Ren LJ; Huang H; Ji XJ
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7435-7443. PubMed ID: 28887634
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR-Cas9 in yeast.
    Guo X; Chavez A; Tung A; Chan Y; Kaas C; Yin Y; Cecchi R; Garnier SL; Kelsic ED; Schubert M; DiCarlo JE; Collins JJ; Church GM
    Nat Biotechnol; 2018 Jul; 36(6):540-546. PubMed ID: 29786095
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Development of CRISPR/Cas9-Based Genome Editing Tools for Polyploid Yeast
    Gu L; Zhang R; Fan X; Wang Y; Ma K; Jiang J; Li G; Wang H; Fan F; Zhang X
    ACS Synth Biol; 2023 Oct; 12(10):2947-2960. PubMed ID: 37816156
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An inducible CRISPR interference library for genetic interrogation of Saccharomyces cerevisiae biology.
    Momen-Roknabadi A; Oikonomou P; Zegans M; Tavazoie S
    Commun Biol; 2020 Nov; 3(1):723. PubMed ID: 33247197
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast.
    Luo J; Sun X; Cormack BP; Boeke JD
    Nature; 2018 Aug; 560(7718):392-396. PubMed ID: 30069047
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Knockout and functional analysis of BSSS-related genes in Acremonium chrysogenum by novel episomal expression vector containing Cas9 and AMA1.
    Liu L; Chen Z; Tian X; Chu J
    Biotechnol Lett; 2022 Jun; 44(5-6):755-766. PubMed ID: 35526203
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genetic transformation of industrial yeasts using an amino acid analog resistance gene as a directly selectable marker.
    Shimura K; Fukuda K; Ouchi K
    Enzyme Microb Technol; 1993 Oct; 15(10):874-6. PubMed ID: 7764106
    [TBL] [Abstract][Full Text] [Related]  

  • 78. CRI-SPA: a high-throughput method for systematic genetic editing of yeast libraries.
    Cachera P; Olsson H; Coumou H; Jensen ML; Sánchez BJ; Strucko T; van den Broek M; Daran JM; Jensen MK; Sonnenschein N; Lisby M; Mortensen UH
    Nucleic Acids Res; 2023 Sep; 51(17):e91. PubMed ID: 37572348
    [TBL] [Abstract][Full Text] [Related]  

  • 79.
    Torello Pianale L; Olsson L
    ACS Synth Biol; 2023 Aug; 12(8):2493-2497. PubMed ID: 37552581
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Suite of New Strain Construction Vectors for Gene Expression Knockdown in Budding Yeast.
    Shively CA; Dong F; Mitra RD
    ACS Synth Biol; 2023 Feb; 12(2):624-633. PubMed ID: 36650116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.