BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 2962636)

  • 1. Uncoupling of oxidative phosphorylation. 2. Alternative mechanisms: intrinsic uncoupling or decoupling?
    Pietrobon D; Luvisetto S; Azzone GF
    Biochemistry; 1987 Nov; 26(23):7339-47. PubMed ID: 2962636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupling of oxidative phosphorylation. 1. Protonophoric effects account only partially for uncoupling.
    Luvisetto S; Pietrobon D; Azzone GF
    Biochemistry; 1987 Nov; 26(23):7332-8. PubMed ID: 2827753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncoupling of oxidative phosphorylation induced by FCCP oleic acid and chloroform in rat liver mitochondria.
    Luvisetto S; Pietrobon D; Azzone GF
    Prog Clin Biol Res; 1988; 273():395-400. PubMed ID: 3420137
    [No Abstract]   [Full Text] [Related]  

  • 4. Uncoupling of oxidative phosphorylation in rat liver mitochondria by general anesthetics.
    Rottenberg H
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3313-7. PubMed ID: 6574486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flux ratios and pump stoichiometries at sites II and III in liver mitochondria. Effect of slips and leaks.
    Luvisetto S; Conti E; Buso M; Azzone GF
    J Biol Chem; 1991 Jan; 266(2):1034-42. PubMed ID: 1845985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncoupler-inhibitor titrations of ATP-driven reverse electron transfer in bovine submitochondrial particles provide evidence for direct interaction between ATPase and NADH:Q oxidoreductase.
    Herweijer MA; Berden JA; Slater EC
    Biochim Biophys Acta; 1986 Apr; 849(2):276-87. PubMed ID: 2421768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of action of agents which uncouple oxidative phosphorylation: direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria.
    Cunarro J; Weiner MW
    Biochim Biophys Acta; 1975 May; 387(2):234-40. PubMed ID: 1125290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies.
    Pietrobon D; Zoratti M; Azzone GF; Caplan SR
    Biochemistry; 1986 Feb; 25(4):767-75. PubMed ID: 3964642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A correlation between respiration and synthesis of ATP in mitochondria at different degree of uncoupling of oxidative phosphorylation].
    Samartsev VN; Kozhina OV; Polishchuk LS
    Biofizika; 2005; 50(4):660-7. PubMed ID: 16212057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of action of oligomycin and acidic uncouplers on proton translocation and energy transfer in "sonic" submitochondrial particles.
    Guerrieri F; Lorusso M; Pansini A; Ferrarese V; Papa S
    J Bioenerg Biomembr; 1976 Jun; 8(3):131-42. PubMed ID: 9385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria.
    Rottenberg H; Robertson DE; Rubin E
    Biochim Biophys Acta; 1985 Aug; 809(1):1-10. PubMed ID: 2862912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Study of the Action of Protonophore Uncouplers and Decoupling Agents as Inducers of Free Respiration in Mitochondria in States 3 and 4: Theoretical and Experimental Approaches.
    Samartsev VN; Semenova AA; Dubinin MV
    Cell Biochem Biophys; 2020 Jun; 78(2):203-216. PubMed ID: 32367259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible effects of fatty acids on respiration, oxidative phosphorylation, and heat production of rat liver mitochondria.
    Matsuoka I; Nakamura T
    J Biochem; 1979 Sep; 86(3):675-81. PubMed ID: 159904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Control of the induction of ion transport through mitochondrial membranes by the enzymes of the oxidative phosphorylation system].
    Novgorodov SA; Dragunova SF; Iaguzhinskiĭ LS
    Biofizika; 1982; 27(2):244-8. PubMed ID: 6462181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoration of membrane potential in mitochondria deenergized with carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP).
    Toninello A; Siliprandi N
    Biochim Biophys Acta; 1982 Nov; 682(2):289-92. PubMed ID: 7171582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-driven transhydrogenase provides an example of delocalized chemiosmotic coupling in reconstituted vesicles and in submitochondrial particles.
    Persson B; Berden JA; Rydström J; van Dam K
    Biochim Biophys Acta; 1987 Nov; 894(2):239-51. PubMed ID: 2960379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature of proton cycling during gramicidin uncoupling of oxidative phosphorylation.
    Luvisetto S; Azzone GF
    Biochemistry; 1989 Feb; 28(3):1100-8. PubMed ID: 2469464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-chain fatty acids act as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria.
    Schönfeld P; Schild L; Kunz W
    Biochim Biophys Acta; 1989 Dec; 977(3):266-72. PubMed ID: 2556180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.