BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 29626541)

  • 1. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species.
    Berry BJ; Trewin AJ; Amitrano AM; Kim M; Wojtovich AP
    J Mol Biol; 2018 Oct; 430(21):3873-3891. PubMed ID: 29626541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial uncoupling, ROS generation and cardioprotection.
    Cadenas S
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):940-950. PubMed ID: 29859845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial H(+) leak and ROS generation: an odd couple.
    Brookes PS
    Free Radic Biol Med; 2005 Jan; 38(1):12-23. PubMed ID: 15589367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production.
    Bevilacqua L; Ramsey JJ; Hagopian K; Weindruch R; Harper ME
    Am J Physiol Endocrinol Metab; 2004 May; 286(5):E852-61. PubMed ID: 14736705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial redox regulation and myocardial ischemia-reperfusion injury.
    Chen CL; Zhang L; Jin Z; Kasumov T; Chen YR
    Am J Physiol Cell Physiol; 2022 Jan; 322(1):C12-C23. PubMed ID: 34757853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncoupling to survive? The role of mitochondrial inefficiency in ageing.
    Brand MD
    Exp Gerontol; 2000 Sep; 35(6-7):811-20. PubMed ID: 11053672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases.
    Cheng J; Nanayakkara G; Shao Y; Cueto R; Wang L; Yang WY; Tian Y; Wang H; Yang X
    Adv Exp Med Biol; 2017; 982():359-370. PubMed ID: 28551798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial uncoupling and lifespan.
    Mookerjee SA; Divakaruni AS; Jastroch M; Brand MD
    Mech Ageing Dev; 2010; 131(7-8):463-72. PubMed ID: 20363244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial Reactive Oxygen Species Generated at the Complex-II Matrix or Intermembrane Space Microdomain Have Distinct Effects on Redox Signaling and Stress Sensitivity in
    Trewin AJ; Bahr LL; Almast A; Berry BJ; Wei AY; Foster TH; Wojtovich AP
    Antioxid Redox Signal; 2019 Sep; 31(9):594-607. PubMed ID: 30887829
    [No Abstract]   [Full Text] [Related]  

  • 11. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia-reperfusion injury.
    Serviddio G; Bellanti F; Tamborra R; Rollo T; Capitanio N; Romano AD; Sastre J; Vendemiale G; Altomare E
    Gut; 2008 Jul; 57(7):957-65. PubMed ID: 18308829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial electron transport chain, ROS generation and uncoupling (Review).
    Zhao RZ; Jiang S; Zhang L; Yu ZB
    Int J Mol Med; 2019 Jul; 44(1):3-15. PubMed ID: 31115493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria.
    Bevilacqua L; Ramsey JJ; Hagopian K; Weindruch R; Harper ME
    Am J Physiol Endocrinol Metab; 2005 Sep; 289(3):E429-38. PubMed ID: 15886224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton leak through the UCPs and ANT carriers and beyond: A breath for the electron transport chain.
    Nesci S
    Biochimie; 2023 Nov; 214(Pt B):77-85. PubMed ID: 37336388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melatonin-mitochondria interplay in health and disease.
    Acuña Castroviejo D; López LC; Escames G; López A; García JA; Reiter RJ
    Curr Top Med Chem; 2011; 11(2):221-40. PubMed ID: 21244359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupling proteins 2 and 3: potential regulators of mitochondrial energy metabolism.
    Boss O; Hagen T; Lowell BB
    Diabetes; 2000 Feb; 49(2):143-56. PubMed ID: 10868929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases.
    Demine S; Renard P; Arnould T
    Cells; 2019 Jul; 8(8):. PubMed ID: 31366145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ischemic damage to every segment of the oxidative phosphorylation cascade elevates ETC driving force and ROS production in cardiac mitochondria.
    Kuzmiak-Glancy S; Glancy B; Kay MW
    Am J Physiol Heart Circ Physiol; 2022 Sep; 323(3):H499-H512. PubMed ID: 35867709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant properties of UCP1 are evolutionarily conserved in mammals and buffer mitochondrial reactive oxygen species.
    Oelkrug R; Goetze N; Meyer CW; Jastroch M
    Free Radic Biol Med; 2014 Dec; 77():210-6. PubMed ID: 25224037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial proton leak: a role for uncoupling proteins 2 and 3?
    Porter RK
    Biochim Biophys Acta; 2001 Mar; 1504(1):120-7. PubMed ID: 11239489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.