BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29626635)

  • 1. On the origin of vanillyl alcohol oxidases.
    Gygli G; de Vries RP; van Berkel WJH
    Fungal Genet Biol; 2018 Jul; 116():24-32. PubMed ID: 29626635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single loop is essential for the octamerization of vanillyl alcohol oxidase.
    Ewing TA; Gygli G; van Berkel WJ
    FEBS J; 2016 Jul; 283(13):2546-59. PubMed ID: 27214042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two tyrosine residues, Tyr-108 and Tyr-503, are responsible for the deprotonation of phenolic substrates in vanillyl-alcohol oxidase.
    Ewing TA; Nguyen QT; Allan RC; Gygli G; Romero E; Binda C; Fraaije MW; Mattevi A; van Berkel WJH
    J Biol Chem; 2017 Sep; 292(35):14668-14679. PubMed ID: 28717004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vanillyl alcohol oxidase from Diplodia corticola: Residues Ala420 and Glu466 allow for efficient catalysis of syringyl derivatives.
    Eggerichs D; Weindorf N; Mascotti ML; Welzel N; Fraaije MW; Tischler D
    J Biol Chem; 2023 Jul; 299(7):104898. PubMed ID: 37295774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanillyl alcohol oxidase.
    Ewing TA; Gygli G; Fraaije MW; van Berkel WJH
    Enzymes; 2020; 47():87-116. PubMed ID: 32951836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths.
    Gygli G; Lucas MF; Guallar V; van Berkel WJH
    PLoS Comput Biol; 2017 Oct; 13(10):e1005787. PubMed ID: 28985219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Two VAO-Type Flavoprotein Oxidases from Myceliophthora thermophila.
    Ferrari AR; Rozeboom HJ; Vugts ASC; Koetsier MJ; Floor R; Fraaije MW
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29303991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases.
    Ewing TA; van Noord A; Paul CE; van Berkel WJH
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29342886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The VAO/PCMH flavoprotein family.
    Ewing TA; Fraaije MW; Mattevi A; van Berkel WJH
    Arch Biochem Biophys; 2017 Oct; 632():104-117. PubMed ID: 28669855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of protein coding gene contents of the fungal phyla Pezizomycotina and Saccharomycotina.
    Arvas M; Kivioja T; Mitchell A; Saloheimo M; Ussery D; Penttila M; Oliver S
    BMC Genomics; 2007 Sep; 8():325. PubMed ID: 17868481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide comparative analysis of putative Pth11-related G protein-coupled receptors in fungi belonging to Pezizomycotina.
    Xu X; Li G; Li L; Su Z; Chen C
    BMC Microbiol; 2017 Jul; 17(1):166. PubMed ID: 28743231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence and structure-based prediction of fructosyltransferase activity for functional subclassification of fungal GH32 enzymes.
    Trollope KM; van Wyk N; Kotjomela MA; Volschenk H
    FEBS J; 2015 Dec; 282(24):4782-96. PubMed ID: 26426731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation.
    Hernández-Ortega A; Ferreira P; Martínez AT
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1395-410. PubMed ID: 22249717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico analysis of L-asparaginase from different source organisms.
    Dwivedi VD; Mishra SK
    Interdiscip Sci; 2014 Jun; 6(2):93-9. PubMed ID: 25172447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols.
    Ferreira P; Medina M; Guillén F; Martínez MJ; Van Berkel WJ; Martínez AT
    Biochem J; 2005 Aug; 389(Pt 3):731-8. PubMed ID: 15813702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the Origin, Evolution, and Physiological Function of the Subtelomeric Aryl-Alcohol Dehydrogenase Gene Family in the Yeast Saccharomyces cerevisiae.
    Yang DD; de Billerbeck GM; Zhang JJ; Rosenzweig F; Francois JM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29079624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the phylogeny or arylamine N-acetyltransferases in fungi.
    Martins M; Dairou J; Rodrigues-Lima F; Dupret JM; Silar P
    J Mol Evol; 2010 Aug; 71(2):141-52. PubMed ID: 20676885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of a novel small secreted protein family with conserved N-terminal IGY motif in Dikarya fungi.
    Cheng Q; Wang H; Xu B; Zhu S; Hu L; Huang M
    BMC Genomics; 2014 Dec; 15(1):1151. PubMed ID: 25526808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights to sequence information of polyphenol oxidase enzyme from different source organisms.
    Malviya N; Srivastava M; Diwakar SK; Mishra SK
    Appl Biochem Biotechnol; 2011 Sep; 165(2):397-405. PubMed ID: 21523355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi.
    Zámocký M; Hallberg M; Ludwig R; Divne C; Haltrich D
    Gene; 2004 Aug; 338(1):1-14. PubMed ID: 15302401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.