These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 29626651)

  • 1. Autophagy as a common pathway in amyotrophic lateral sclerosis.
    Nguyen DKH; Thombre R; Wang J
    Neurosci Lett; 2019 Apr; 697():34-48. PubMed ID: 29626651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.
    Beckers J; Tharkeshwar AK; Van Damme P
    Autophagy; 2021 Nov; 17(11):3306-3322. PubMed ID: 33632058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy and ALS: mechanistic insights and therapeutic implications.
    Chua JP; De Calbiac H; Kabashi E; Barmada SJ
    Autophagy; 2022 Feb; 18(2):254-282. PubMed ID: 34057020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway.
    Ciura S; Sellier C; Campanari ML; Charlet-Berguerand N; Kabashi E
    Autophagy; 2016 Aug; 12(8):1406-8. PubMed ID: 27245636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of intracellular calcium accumulation on proteins encoded by the major genes underlying amyotrophic lateral sclerosis.
    De Marco G; Lomartire A; Manera U; Canosa A; Grassano M; Casale F; Fuda G; Salamone P; Rinaudo MT; Colombatto S; Moglia C; Chiò A; Calvo A
    Sci Rep; 2022 Jan; 12(1):395. PubMed ID: 35013445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disturbance of proteasomal and autophagic protein degradation pathways by amyotrophic lateral sclerosis-linked mutations in ubiquilin 2.
    Osaka M; Ito D; Suzuki N
    Biochem Biophys Res Commun; 2016 Apr; 472(2):324-31. PubMed ID: 26944018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis.
    Häkkinen S; Chu SA; Lee SE
    Neurobiol Dis; 2020 Nov; 145():105063. PubMed ID: 32890771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of Tbk1 disrupts autophagy and reproduces behavioral and locomotor symptoms of FTD-ALS in mice.
    Duan W; Guo M; Yi L; Zhang J; Bi Y; Liu Y; Li Y; Li Z; Ma Y; Zhang G; Liu Y; Song X; Li C
    Aging (Albany NY); 2019 Apr; 11(8):2457-2476. PubMed ID: 31039129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The emerging roles of microRNAs in the pathogenesis of frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum disorders.
    Gascon E; Gao FB
    J Neurogenet; 2014; 28(1-2):30-40. PubMed ID: 24506814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common Molecular Pathways in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.
    Weishaupt JH; Hyman T; Dikic I
    Trends Mol Med; 2016 Sep; 22(9):769-783. PubMed ID: 27498188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Making connections: pathology and genetics link amyotrophic lateral sclerosis with frontotemporal lobe dementia.
    Fecto F; Siddique T
    J Mol Neurosci; 2011 Nov; 45(3):663-75. PubMed ID: 21901496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function.
    Wu JJ; Cai A; Greenslade JE; Higgins NR; Fan C; Le NTT; Tatman M; Whiteley AM; Prado MA; Dieriks BV; Curtis MA; Shaw CE; Siddique T; Faull RLM; Scotter EL; Finley D; Monteiro MJ
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):15230-15241. PubMed ID: 32513711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UBQLN2/P62 cellular recycling pathways in amyotrophic lateral sclerosis and frontotemporal dementia.
    Fecto F; Siddique T
    Muscle Nerve; 2012 Feb; 45(2):157-62. PubMed ID: 22246868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TBK1: a new player in ALS linking autophagy and neuroinflammation.
    Oakes JA; Davies MC; Collins MO
    Mol Brain; 2017 Feb; 10(1):5. PubMed ID: 28148298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutant UBQLN2
    Chen T; Huang B; Shi X; Gao L; Huang C
    Acta Neuropathol Commun; 2018 Nov; 6(1):122. PubMed ID: 30409191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia.
    Jovičić A; Paul JW; Gitler AD
    J Neurochem; 2016 Aug; 138 Suppl 1():134-44. PubMed ID: 27087014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The converging roles of sequestosome-1/p62 in the molecular pathways of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).
    Davidson JM; Chung RS; Lee A
    Neurobiol Dis; 2022 May; 166():105653. PubMed ID: 35143965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology.
    Ince PG; Highley JR; Kirby J; Wharton SB; Takahashi H; Strong MJ; Shaw PJ
    Acta Neuropathol; 2011 Dec; 122(6):657-71. PubMed ID: 22105541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the genetics of amyotrophic lateral sclerosis and frontotemporal dementia: common pathways in neurodegenerative disease.
    Talbot K; Ansorge O
    Hum Mol Genet; 2006 Oct; 15 Spec No 2():R182-7. PubMed ID: 16987882
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 32.