These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29626853)

  • 1. Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles.
    Gaspard P; Kapral R
    J Chem Phys; 2018 Apr; 148(13):134104. PubMed ID: 29626853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium thermodynamics and boundary conditions for reaction and transport in heterogeneous media.
    Gaspard P; Kapral R
    J Chem Phys; 2018 May; 148(19):194114. PubMed ID: 30307205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular theory of Langevin dynamics for active self-diffusiophoretic colloids.
    Robertson B; Schofield J; Gaspard P; Kapral R
    J Chem Phys; 2020 Sep; 153(12):124104. PubMed ID: 33003702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear and angular motion of self-diffusiophoretic Janus particles.
    Burelbach J; Stark H
    Phys Rev E; 2019 Oct; 100(4-1):042612. PubMed ID: 31771000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication: Mechanochemical fluctuation theorem and thermodynamics of self-phoretic motors.
    Gaspard P; Kapral R
    J Chem Phys; 2017 Dec; 147(21):211101. PubMed ID: 29221377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: "Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles" [J. Chem. Phys. 148, 134104 (2018)].
    Gaspard P; Kapral R
    J Chem Phys; 2018 Jul; 149(4):049901. PubMed ID: 30068168
    [No Abstract]   [Full Text] [Related]  

  • 7. Active Matter, Microreversibility, and Thermodynamics.
    Gaspard P; Kapral R
    Research (Wash D C); 2020; 2020():9739231. PubMed ID: 32524094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic approach to the self-diffusiophoresis of colloidal Janus particles.
    Speck T
    Phys Rev E; 2019 Jun; 99(6-1):060602. PubMed ID: 31330705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of a self-diffusiophoretic particle in shear flow.
    Frankel AE; Khair AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013030. PubMed ID: 25122392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Onsager reciprocal relations and chemo-mechanical coupling for chemically active colloids.
    De Corato M; Pagonabarraga I
    J Chem Phys; 2022 Aug; 157(8):084901. PubMed ID: 36050019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The behavior of active diffusiophoretic suspensions: An accelerated Laplacian dynamics study.
    Yan W; Brady JF
    J Chem Phys; 2016 Oct; 145(13):134902. PubMed ID: 27782418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
    ten Hagen B; Wittkowski R; Takagi D; Kümmel F; Bechinger C; Löwen H
    J Phys Condens Matter; 2015 May; 27(19):194110. PubMed ID: 25923010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent inertia of self-propelled particles: The Langevin rocket.
    Sprenger AR; Jahanshahi S; Ivlev AV; Löwen H
    Phys Rev E; 2021 Apr; 103(4-1):042601. PubMed ID: 34005997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-propelled torus colloids.
    Wang J; Huang MJ; Kapral R
    J Chem Phys; 2020 Jul; 153(1):014902. PubMed ID: 32640804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusiophoretic self-propulsion for partially catalytic spherical colloids.
    de Graaf J; Rempfer G; Holm C
    IEEE Trans Nanobioscience; 2015 Apr; 14(3):272-88. PubMed ID: 25751872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collaboration and competition between active sheets for self-propelled particles.
    Laskar A; Shklyaev OE; Balazs AC
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9257-9262. PubMed ID: 31019092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microreversibility, fluctuations, and nonlinear transport in transistors.
    Gu J; Gaspard P
    Phys Rev E; 2019 Jan; 99(1-1):012137. PubMed ID: 30780344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boundary Effects on Diffusiophoresis of Cylindrical Particles in Nonelectrolyte Gradients.
    Keh HJ; Hsu JH
    J Colloid Interface Sci; 2000 Jan; 221(2):210-222. PubMed ID: 10631022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusiophoresis in suspensions of charged porous particles.
    Huang HY; Keh HJ
    J Phys Chem B; 2015 Feb; 119(5):2040-50. PubMed ID: 25575124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic thermodynamics of active Brownian particles.
    Ganguly C; Chaudhuri D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032102. PubMed ID: 24125209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.