These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 29626859)

  • 1. Lessons on electronic decoherence in molecules from exact modeling.
    Hu W; Gu B; Franco I
    J Chem Phys; 2018 Apr; 148(13):134304. PubMed ID: 29626859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying Early Time Quantum Decoherence Dynamics through Fluctuations.
    Gu B; Franco I
    J Phys Chem Lett; 2017 Sep; 8(17):4289-4294. PubMed ID: 28823164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic coherence dynamics in trans-polyacetylene oligomers.
    Franco I; Brumer P
    J Chem Phys; 2012 Apr; 136(14):144501. PubMed ID: 22502527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the laser control of electronic decoherence.
    Hu W; Gu B; Franco I
    J Chem Phys; 2020 May; 152(18):184305. PubMed ID: 32414250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Fundamental Connection Between Electronic Correlation and Decoherence.
    Kar A; Chen L; Franco I
    J Phys Chem Lett; 2016 May; 7(9):1616-21. PubMed ID: 27075605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer, decoherence, and protein dynamics: insights from atomistic simulations.
    Narth C; Gillet N; Cailliez F; Lévy B; de la Lande A
    Acc Chem Res; 2015 Apr; 48(4):1090-7. PubMed ID: 25730126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic interactions do not affect electronic decoherence in the pure-dephasing limit.
    Gu B; Franco I
    J Chem Phys; 2018 Nov; 149(17):174115. PubMed ID: 30408977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying fermionic decoherence in many-body systems.
    Kar A; Franco I
    J Chem Phys; 2017 Jun; 146(21):214107. PubMed ID: 28595395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microscopic model of wave-function dephasing and decoherence in the double-slit experiment.
    Ramakrishna S
    Sci Rep; 2021 Oct; 11(1):20986. PubMed ID: 34697395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When can quantum decoherence be mimicked by classical noise?
    Gu B; Franco I
    J Chem Phys; 2019 Jul; 151(1):014109. PubMed ID: 31272169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Theory for the Timescale of Molecular Electronic Decoherence in the Condensed Phase.
    Gu B; Franco I
    J Phys Chem Lett; 2018 Feb; 9(4):773-778. PubMed ID: 29343064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron Dynamics upon Ionization of Polyatomic Molecules: Coupling to Quantum Nuclear Motion and Decoherence.
    Vacher M; Bearpark MJ; Robb MA; Malhado JP
    Phys Rev Lett; 2017 Feb; 118(8):083001. PubMed ID: 28282194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dephasing and Decoherence in Vibrational and Electronic Line Shapes.
    Kananenka AA; Strong SE; Skinner JL
    J Phys Chem B; 2020 Feb; 124(8):1531-1542. PubMed ID: 31990552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.
    Segnorile HH; Zamar RC
    J Chem Phys; 2011 Dec; 135(24):244509. PubMed ID: 22225171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical evaluation of approximate quantum decoherence rates for an electronic transition in methanol solution.
    Turi L; Rossky PJ
    J Chem Phys; 2004 Feb; 120(8):3688-98. PubMed ID: 15268531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Born-Oppenheimer Liouville-von Neumann Dynamics. Evolution of a Subsystem Controlled by Linear and Population-Driven Decay of Mixing with Decoherent and Coherent Switching.
    Zhu C; Jasper AW; Truhlar DG
    J Chem Theory Comput; 2005 Jul; 1(4):527-40. PubMed ID: 26641672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Hopping Dynamics on Vibronic Coupling Models.
    Zobel JP; Heindl M; Plasser F; Mai S; González L
    Acc Chem Res; 2021 Oct; 54(20):3760-3771. PubMed ID: 34570472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoherence Allows Model Reduction in Nonadiabatic Dynamics Simulations.
    Trivedi DJ; Prezhdo OV
    J Phys Chem A; 2015 Aug; 119(33):8846-53. PubMed ID: 26221974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed quantum-classical simulations of charge transport in organic materials: numerical benchmark of the Su-Schrieffer-Heeger model.
    Wang L; Beljonne D; Chen L; Shi Q
    J Chem Phys; 2011 Jun; 134(24):244116. PubMed ID: 21721621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.